BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Improving Representation of Ice Particle Formation in Cloud Models
Published: July 06, 2016
Posted: October 20, 2016

A commercially available ice nucleation instrument helps achieve better understanding of atmospheric ice particle formation.

The Science
A new instrument, the spectrometer for ice nuclei (SPIN), enables investigation of the ice nucleation properties of aerosol particles at mixed-phase and cirrus cloud conditions.

The Impact
Ice nucleation measurements at higher temporal and spatial resolution are missing. These measurements are necessary to improve and develop ice nucleation parameterizations used in climate models. Such high-density coverage will yield better understanding of atmospheric ice formation, which produces large uncertainties in simulating Earth’s climate and hydrological cycle.

The nature of atmospheric aerosol particles responsible for nucleating ice are not understood. This critical gap induces large uncertainties in representing ice particle formation processes in cloud models. The new commercially available SPIN chamber improves the coverage of ice nucleation measurements. SPIN is based on the continuous flow diffusion chamber (CFDC) style ice nucleation chamber, where aerosol particles are exposed to defined temperature and supersaturation conditions and ice nucleated particles are grown to be counted as ice crystals. SPIN also consists of an evaporation section to evaporate  super cooled droplets and an advanced particle counter to distinguish liquid and ice phases. SPIN is well characterized using laboratory standards and is commercially available.

Contacts (BER)
Rick Petty and Ashley Williamson
SBIR-STTR Program and

(PI Contact)
Gourihar Kulkarni
Pacific Northwest National Laboratory; 509-375-3729

This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs.

Garimella, S., T. B. Kristensen, K. Ignatius, A. Welti, J. Voightlander, G. Kulkarni, F. Sagan, G. L. Kok, J. Dorsey, L. Nichman, D. A. Rothenberg, M. Rosch, A. C. R. Kurchgassner, R. Ladkin, H. Wex, T. W. Wilson, L. A. Ladino, J. P. D. Abbatt, O. Stetzer, U. Lohmann, F. Stratmann, and D. J. Cziczo. 2016. “The SPectrometer for Ice Nuclei (SPIN): An Instrument to Investigate Ice Nucleation,” Atmospheric Measurement Techniques 9(7), 2781-95. DOI:10.5194/amt-9-2781-2016. (Reference link)

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)