U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Unraveling Atmospheric Aerosol Layers
Published: August 22, 2016
Posted: October 06, 2016

Quantification of the processes responsible for vertical variations in aerosol properties over the Mid-Atlantic coast requires higher model resolution.

The Science
Previous studies have revealed large errors in the characteristics of simulated aerosol particle layers in global models that subsequently contribute to uncertainties in radiative forcing calculations. Recent research identified the processes that contribute to the vertical distribution of aerosols. Understanding these processes is a necessary first step in better representing the relevant atmospheric processes in climate models.

The Impact
Much attention has been placed on the role of rapid vertical transport associated with boundary layer turbulence and convective clouds, but slower vertical transport associated with synoptic-scale (large-scale) weather systems is often neglected. A recent study shows that the coarse spatial resolution normally used in global climate models likely underestimates the magnitude of mean vertical motions in the atmosphere, consequently leading to an underprediction of aerosol concentrations in the free troposphere. The higher resolution model used in this study produced stronger vertical motions and better captured the structure of aerosol layers and aerosol concentrations in the free troposphere. The researchers noted that next-generation climate models using “regionally refined” domains will not entirely solve the problem of misrepresenting aerosol layers, since a large fraction of the global domain would still employ relatively coarse resolution.

This research identified atmospheric processes responsible for the structure and composition of the aerosol layer using extensive in situ and remote-sensing measurements collected during the 2012 Two Column Aerosol Project (TCAP), undertaken by the Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility. The TCAP campaign’s goal was to sample aerosol microphysical properties in two columns: one fixed column near the Cape Cod National Seashore’s Highlands Center on the eastern shore of Cape Cod, Massachusetts, and another movable column several hundred kilometers over the Atlantic Ocean. Aerosol layers were observed on every flight conducted by the research aircraft, although the altitude, thickness, and aerosol concentrations varied daily. A key challenge was to understand the reason for this variability in the aerosol layers, particularly those located in the free troposphere several kilometers above the ocean surface, and identify the source of these aerosols. This research showed that a higher-resolution regional model produced more aerosol mass in the free troposphere than a coarser-resolution global climate model, so that the fraction of aerosol optical thickness in the free troposphere was more consistent with lidar measurements. Simulated aerosol layers in the free troposphere were largely the result of mean vertical motions that transport aerosols from the top of the boundary layer to higher altitudes. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid-scale convective clouds modulated the concentrations of aerosols aloft, this parameterization did not significantly change the overall altitude and depth of the layers.


Ashley Williamson
Atmospheric System Research Program
Shaima Nasiri
Atmospheric System Research Program
Sally McFarlane
ARM Climate Research Facility

(PI Contact)
Jerome D. Fast
Pacific Northwest National Laboratory

This research is based on work supported by DOE, Office of Science, Office of Biological and Environmental Research (BER), Atmospheric System Research (ASR) program. Logistical support for TCAP came from the ARM Climate Research Facility, a DOE Office of Science user facility sponsored by BER. The regional-scale model simulations were performed on a Cascade supercomputer at DOE’s Environmental Molecular Sciences Laboratory.

Fast, J. D., et al. 2016. “Model Representations of Aerosol Layers Transported from North American over the Atlantic Ocean During the Two-Column Aerosol Project,” Journal of Geophysical Research: Atmospheres 121(16), 9814-48. DOI: 10.1002/2016JD025248. (Reference link)

Related Links
Campaign : Two-Column Aerosol Project (TCAP)

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research
  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Facility: DOE ARM User Facility

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)