U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


External Industrial Sources Affect Regional and Local SO2 and O3 Levels in Mexico City
Published: August 22, 2014
Posted: October 04, 2016

Researchers reaffirm the importance of emission source identification for accurate modeling.

The Science
A recent study determined how strongly various emission sources affect air quality in areas of the Mexico City metropolitan area.

The Impact
Air quality in megacities can be influenced by both local emission sources and more distant external global- and regional-scale emission sources. Studying emission sources can provide important insights into attribution of atmospheric sources for enhancing model integrity as well as applications such as improving air quality.

Summary
Since the number and sizes of megacities are projected to increase in the future, properly representing them in global atmospheric models is important. A research team, including Department of Energy scientists from Pacific Northwest National Laboratory, evaluated an observed sulfur dioxide (SO2) peak at a suburban supersite and at ambient air quality monitoring stations located in the Mexico City metropolitan area (MCMA) during the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaign. The researchers found that this peak could be related to an important episodic emission event originating northeast of the MCMA. Because regional SO2 emission sources were not considered in previous studies, the episodic emission suggests the possibility of “overlooked” emission sources that could influence MCMA air quality. The research found that cement plants in the state of Hidalgo and Mexico can account for about 42 percent of the SO2 levels in the northeast region of the MCMA basin and 41 percent at the suburban supersite T1; at some monitoring stations the contribution can be even higher than the contribution from the Tula Industrial Complex (TIC). A modeling study suggests a low contribution to the MCMA (1 to 4 ppb) and a slightly higher contribution at the suburban T1 (6 ppb) and rural T2 (5 ppb) supersites. However, the contributions could be as high as 10 ppb in the upper northwest region of the basin and in the southwest and south-southeast regions of the state of Hidalgo. The research also presents a first estimate of the potential contribution from flaring activities to regional ozone levels. Results suggest that up to 30 percent of the total regional ozone from TIC could be related to flaring activities. The combination of emission reductions in power plant, refinery, and local sources in the MCMA could result in higher reductions in the average SO2 concentrations, which tend to have a more significant impact on the northern part of the basin, while reductions of urban sources in the megacity tend to diminish SO2 levels substantially in the central, southwest, and southeast regions.

Contacts (BER PM)
Ashley Williamson
ASR Program Manager, SC-23.1
ashley.williamson@science.doe.gov
(PI Contact)
Jerome Fast
Pacific Northwest National Laboratory (PNNL)
jerome.fast@pnnl.gov

Funding
This work was supported by the U.S. Department of Energy’s Atmospheric System Research Program under contract DE-AC06-76RLO 1830 at PNNL. Additional support was provided by the National Science Foundation under award AGS-1135141.

Publications
Almanza, V. H., L. T. Molina, G. Li, J. Fast, and G. Sosa. 2014. “Impact of External Industrial Sources on the Regional and Local SO2 and O3 Levels of the Mexico Megacity,” Atmospheric Chemistry and Physics 14, 8483-99. DOI: 10.5194/acp-14-8483-2014. (Reference link)

Related Links
ASR Highlight

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)