U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Advancing Toward Construction of a Bacterial Recoded Genome
Published: August 19, 2016
Posted: September 09, 2016

By recoding bacterial genomes such as Escherichia coli (pictured), it is possible to create organisms that can potentially synthesize products not commonly found in nature. Image courtesy of iStock

Initial testing of a synthetic bacterial genome that uses 57 of the 64 natural codons showed minimal fitness impairment.

The Science
Taking advantage of the genetic code’s redundancy, a collaborative project led by researchers at Harvard University synthesized a bacterial genome that uses 57 of the 64 natural codons; the remaining seven codons were reassigned to nonstandard amino acids that can be used to develop novel protein functions. So far, DNA segments that span over 60% of the synthetic genome and contain over half the essential genes have been introduced into living cells to test for deleterious effects, and only very few cases showed significant growth defects.

The Impact
Reassigning several of the 64 natural codons in a bacterial genome enables the development of microbial strains with multiple combinations of proteins that can perform novel functions, while preventing the engineered strain from surviving if it escapes laboratory conditions. This large-scale, genome-wide recoding required developing design tools that must be fine-tuned after testing and gaining knowledge of rules that must be observed to synthesize functional genetic elements and networks. This research shows that recoding essential genes is possible and has uncovered fundamental design principles.    

Summary
To construct a completely recoded Escherichia coli genome, the researchers first used computational tools to design a genomic sequence lacking all instances of seven redundant codons and synthesized the genome in 87 fragments spanning 50 kb each. Testing of 55 of these fragments, which contain 63% of the genome and 52% of essential genes, showed that most of them caused limited or no change in growth and transcription levels. The recoded version of one gene resulted in severe fitness impairment, but the researchers were able to redesign the gene, allowing the strain to survive. At the same time, the researchers were able to optimize the design tools to further reduce potential growth defects in recoded microbes. This research demonstrates the feasibility of high-level recoding of microbial organisms to confer new functionality such as the development of new bioproducts. It also shows that genome-wide engineering approaches provide new knowledge on the fundamental principles that drive biological systems.  

Contacts (BER PM)
Pablo Rabinowicz
pablo.rabinowicz@science.doe.gov
(PI Contact)
George M. Church
Department of Genetics, Harvard Medical School
Wyss Institute for Biologically Inspired Engineering
Harvard University
Boston, MA
gchurch@genetics.med.harvard

Funding
This work was supported by the Office of Biological and Environmental Research within the U.S. Department of Energy’s Office of Science (award DEFG02-02ER63445). Authors also acknowledge support from the U.S. Department of Defense and National Science Foundation.

Publication
Ostrov, N., M. Landon, M. Guell, G. Kuznetsov, J. Teramoto, N. Cervantes, M. Zhou, K. Singh, M. Napolitano, M. Moosburner, E. Shrock, B. Pruitt, N. Conway, D. Goodman, C. Gardner, G. Tyree, A. Gonzales, B. Wanner, J. Norville, M. Lajoie, and G. Church. 2016. “Design, Synthesis, and Testing Toward a 57-Codon Genome,” Science 353(6301), 819-22. DOI: 10.1126/science.aaf3639. (Reference link)

Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: Biosystems Design

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)