BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Liquid, Ice, or Both?
Published: June 10, 2016
Posted: August 12, 2016

A new algorithm uses ARM remote-sensing measurements and multivariate statistics to determine whether clouds consist of liquid droplets, ice crystals, or both.

The Science
The phase of a cloud (whether it consists of liquid droplets, ice crystals, or both) is an important factor in both the lifetime and radiative impact of a cloud. However, cloud phase is a property that is difficult to simulate correctly in climate models as it depends on interactions among thermodynamic, dynamical, and microphysical processes. A necessary step toward improving climate models is making observations of cloud phase with sufficient accuracy to constrain model representations of the processes that govern cloud phase.

The Impact
A new methodology estimates the probability of a given cloud phase from observations taken by vertically pointing active remote sensors at the Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility. An advantage over previous methods is that the new method includes additional higher-order radar moments and provides uncertainty information on the cloud-phase classification.

Summary
This study outlines a methodology using a basic Bayesian classifier to estimate the probabilities of cloud-phase class from ARM vertically pointing active remote sensors. The advantage of this method over previous methods is that it provides uncertainty information on the phase classification. The study also tested the value of including higher moments of the cloud radar Doppler spectrum than are traditionally used operationally. Using training data of known phase from the ARM Mixed-Phase Arctic Cloud Experiment (M-PACE) field campaign, the study demonstrates a proof of concept for how the method can be used to train an algorithm that identifies ice, liquid, mixed phase, and snow. Over 95% of data are identified correctly for pure ice and liquid cases used in this study. Mixed-phase and snow cases are more problematic to identify correctly. When lidar data are not available, including additional information from the Doppler spectrum provides substantial improvement to the algorithm. This study is a first step toward an operational algorithm and can be expanded to include additional categories such as drizzle with additional training data.

Contacts (BER PM)
Sally McFarlane
ARM Program Manager
Sally.McFarlane@science.doe.gov

 (PI Contact)
Laura Riihimaki
Pacific Northwest National Laboratory
laura.riihimaki@pnnl.gov

Funding
Research was conducted under the Pacific Northwest National Laboratory’s Laboratory Directed Research and Development Program. Data were obtained from the ARM Climate Research Facility, a DOE Office of Science user facility sponsored by DOE’s Office of Biological and Environmental Research.

Publication
Riihimaki, L. D., J. M. Comstock, K. K. Anderson, A. Holmens, and E. Luke. 2016. “A Path Towards Uncertainty Assignment in an Operational Cloud-Phase Algorithm from ARM Vertically Pointing Active Sensors,” Advances in Statistical Climatology, Meteorology and Oceanography 2, 49-62. DOI: 10.5194/ascmo-2-49-2016. (Reference link)

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research
  • Facility: DOE ARM User Facility

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)