U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Thawing Permafrost Could Accelerate Carbon Releases to the Atmosphere
Published: June 13, 2016
Posted: August 12, 2016

The coastal wetlands and polygonal landscapes on the North Slope of Alaska encompass a range of dry, aerobic tundra and wet, anaerobic tundra. [Image courtesy U.S. Department of Energy, Oak Ridge National Laboratory]
High-centered polygons in Barrow, Alaska, include dry, aerobic tundra surrounded by wet, anaerobic soils. [Image courtesy U.S. Department of Energy, Oak Ridge National Laboratory]

These potential greenhouse gas emissions were found to be dominated by carbon dioxide, which has a lower global warming potential than methane.

The Science                       
Rapid warming in the Arctic is leading to the thawing of carbon-rich soils that have been permanently frozen for millennia. As these soils thaw, microbial decomposition could release greenhouse gases and increase the rate of global warming. A recent study looked at the potential amount of carbon that could be released into the atmosphere through this thawing and whether that carbon would be released as carbon dioxide or methane, a more potent greenhouse gas.

The Impact
The Arctic study found that the total amount of carbon released from thawing soils, and whether the carbon was released as carbon dioxide or methane, was related to whether soils were drier and aerobic or waterlogged and anaerobic. Total carbon release, even when taking into account the stronger warming potential of methane, was greatest under aerobic soil conditions, indicating that drier soils may provide a larger, positive feedback to global warming than wetter soils.  

An international research team led by Northern Arizona University used two meta-analyses to investigate the greenhouse gas release from soils sampled from across the permafrost zone and warmed in laboratory incubations. The first analysis focused on the amount of carbon released in response to warming, while the second analysis focused on the difference in the relative amount of carbon released as carbon dioxide or methane under aerobic or anaerobic soil conditions. Potential warming of 10°C increased total carbon release by a factor of two, and even when taking into account the stronger warming potential of methane, total carbon release was greatest under aerobic soil conditions. The implications of these results are that drier soils may provide a larger, positive feedback to global warming than wetter soils. Further studies are focused on addressing some of the key questions raised by this research. For example, where, when, and why will the Arctic become wetter or drier, and what are the implications for climate forcing? How should these processes be represented by mechanistic models of the Arctic?

PI Contact
Colleen M. Iversen
Senior Scientist
Climate Change Science Institute and
Environmental Sciences Division
Oak Ridge National Laboratory
One Bethel Valley Road, Bldg. 4500N
Oak Ridge TN 37831-6301
Phone: 865-241-3961

Contacts (BER PM)
Daniel Stover, SC-23.1, Daniel.Stover@science.doe.gov, 301-903-0289; and Jared DeForest, SC-23.1, Jared.DeForest@science.doe.gov, 301-903-1678

Financial support was provided by the National Science Foundation (NSF) Vulnerability of Permafrost Carbon Research Coordination Network grant 955713, with continued support from the NSF Research Synthesis and Knowledge Transfer in a Changing Arctic: Science Support for the Study of Environmental Arctic Change grant 1331083. Additional funding came from the Department of Energy, Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem Science program (DE-SC0006982); United Kingdom Natural Environment Research Council (NE/K000179/1); German Research Foundation (Excellence cluster CliSAP); Department of Ecosystem Biology, Grant agency of South Bohemian University, GAJU project numbers 146/2013/P and 146/2013/D; NSF Office of Polar Programs (1312402); NSF Division of Environmental Biology (0423385 and 1026843); European Union (FP-7-ENV-2011, project PAGE21, contract number 282700); Academy of Finland (project CryoN, decision number 132 045); Academy of Finland (project COUP, decision number 291691; part of the European Union Joint Programming Initiative, Climate); University of Eastern Finland (project FiWER); Maj and Tor Nessling Foundation; and Nordic Center of Excellence (project DeFROST).

Schädel, C., M. K. F. Bader, E. A. G. Schuur, C. Biasi, R. Bracho, P. Capek, S. De Baets, K. Diakova, J. Ernakovich, C. Estop-Aragones, D. E. Graham, I. P. Hartley, C. M. Iversen, E. Kane, C. Knoblauch, M. Lupascu, P. J. Martikainen, S. M. Natali, R. J. Norby, J. A. O'Donnell, T. R. Chowdhury, H. Santruckova, G. Shaver, V. L. Sloan, C. C. Treat, M. R. Turetsky, M. P. Waldrop, and K. P. Wickland. 2016. “Potential Carbon Emissions Dominated by Carbon Dioxide from Thawed Permafrost Soils,” Nature Climate Change, DOI: 10.1038/nclimate3054. (Reference link)

Related Links
NGEE Artic
Northern Arizona University news release
ORNL news release
University of Exeter news release
Michigan Tech news release

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)