Subsurface Biogeochemical Research. Click to return to home page.
Department of Energy Office of Science. Click to visit main DOE SC site.

U.S. Department of Energy Office of Biological and Environmental Research

Searchable Research Highlights for
Subsurface Biogeochemical Research Program



Reconciling Observations and Global Models of Terrestrial Water Fluxes
Published: September 01, 2016
Posted: August 04, 2016


Modeling Water Movement. This conceptual diagram compares two approaches for modeling water movement above and below the land surface. Traditional land surface models simplify the system by solving it as a set of discrete columns without lateral groundwater flow, while integrated hydrologic models connect three-dimensional flow in the subsurface with processes at the land surface. [Image courtesy Laura Condon, Syracuse University; Mary Michael Forrester and Reed Maxwell, Colorado School of Mines]



Connecting Water, Plant Function, and Scale. A mosaic of plant and water images making up a single leaf overlaid on the continental United States illustrates the connection between water, plant function, and scale. Continental-scale simulations reconcile previous stand and global scale approaches and link lateral groundwater flow to transpiration partitioning. [Image courtesy Mary Michael Forrester, Colorado School of Mines]


Water table depth and groundwater flow are key to understanding the amount of water that plants transmit to the atmosphere.

The Science
Plants are one of the largest water users on land, and, through transpiration, they move more water into the atmosphere than streams or rivers move across the landscape. Unlike stream flow, which can be easily observed, measuring and simulating the amount of water plants transmit to the atmosphere is a significant challenge. A new modeling study using high-performance computers (HPCs) shows that lateral groundwater flow, not included in previous modeling approaches, may be the missing link to predicting how important plant water use is to the total hydrologic system.

The Impact
The relative importance of plant transpiration remains one of the largest uncertainties in balancing water at continental scales. Improving the large-scale simulation of plant transpiration will enable scientists to better predict hydrologic response and manage water resources, as well as predict and understand how much freshwater is available globally.

Summary
Using integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology, the researchers studied the relative importance of transpiration as a fraction of all of the water moving from the land surface to the atmosphere (commonly referred to as transpiration partitioning) at the continental scale. They found that both the total flux of water and transpiration partitioning are connected to water table depth. Because of this connection, including groundwater flow in the model increases transpiration partitioning from 47±13% to 62±12%. This finding suggests that groundwater flow, which is generally simplified or excluded from other continental-scale simulations, may provide a missing link to reconciling observations and global models of terrestrial water fluxes.

BER PM Contact
David Lesmes, SC-23.1, 301-903-2977
Paul Bayer, SC-23.1, 301-903-5324

Contact
Reed Maxwell
Colorado School of Mines
Rmaxwell@mines.edu

Laura Condon
Syracuse University
lecondon@syr.edu

Funding
This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research and Office of Advanced Scientific Computing through the Interoperable Design of Extreme-scale Application Software (IDEAS) project. Simulations were made possible through support from Yellowstone at the National Center for Atmospheric Research Computational and Information Systems Laboratory.

Publication
Maxwell, R. M., and L. E. Condon. 2016. “Connections Between Groundwater Flow and Transpiration Partitioning,” Science, DOI: 10.1126/science.aaf7891. (Reference link)

Topic Areas:

  • Research Area: Climate and Earth System Modeling
  • Research Area: Subsurface Biogeochemical Research
  • Cross-Cutting: Scientific Computing and SciDAC
  • Mission Science: Climate

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

Recent Highlights

Nov 21, 2017
CrunchFlow Receives 2017 R&D 100 Award
Powerful software simulates how chemical reactions occur and change as fluids travel underground. [more...]

Nov 01, 2017
Assembly of Microbial Communities Affects Biogeochemistry
Dispersal varies the relationship between microbial communities and biogeochemical function.
more...]

Sep 29, 2017
How Bacteria Produce Manganese Oxide Nanoparticles
Structural characterization of bacterial enzyme complex sheds light on manganese biomineralizati [more...]

Sep 05, 2017
A Regional Model for Uranium Redox State and Mobility in the Environment
Redox variable sediments mediate uranium mobility in the upper Colorado River Basin. [more...]

Aug 26, 2017
New Approach to Characterize Natural Organic Matter in Belowground Sediments
Efforts to characterize carbon stored in sediments below 1 meter are critical for understanding t [more...]