Subsurface Biogeochemical Research. Click to return to home page.
Department of Energy Office of Science. Click to visit main DOE SC site.

U.S. Department of Energy Office of Biological and Environmental Research

Searchable Research Highlights for
Subsurface Biogeochemical Research Program



Reconciling Observations and Global Models of Terrestrial Water Fluxes
Published: September 01, 2016
Posted: August 04, 2016


Modeling Water Movement. This conceptual diagram compares two approaches for modeling water movement above and below the land surface. Traditional land surface models simplify the system by solving it as a set of discrete columns without lateral groundwater flow, while integrated hydrologic models connect three-dimensional flow in the subsurface with processes at the land surface. [Image courtesy Laura Condon, Syracuse University; Mary Michael Forrester and Reed Maxwell, Colorado School of Mines]



Connecting Water, Plant Function, and Scale. A mosaic of plant and water images making up a single leaf overlaid on the continental United States illustrates the connection between water, plant function, and scale. Continental-scale simulations reconcile previous stand and global scale approaches and link lateral groundwater flow to transpiration partitioning. [Image courtesy Mary Michael Forrester, Colorado School of Mines]


Water table depth and groundwater flow are key to understanding the amount of water that plants transmit to the atmosphere.

The Science
Plants are one of the largest water users on land, and, through transpiration, they move more water into the atmosphere than streams or rivers move across the landscape. Unlike stream flow, which can be easily observed, measuring and simulating the amount of water plants transmit to the atmosphere is a significant challenge. A new modeling study using high-performance computers (HPCs) shows that lateral groundwater flow, not included in previous modeling approaches, may be the missing link to predicting how important plant water use is to the total hydrologic system.

The Impact
The relative importance of plant transpiration remains one of the largest uncertainties in balancing water at continental scales. Improving the large-scale simulation of plant transpiration will enable scientists to better predict hydrologic response and manage water resources, as well as predict and understand how much freshwater is available globally.

Summary
Using integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology, the researchers studied the relative importance of transpiration as a fraction of all of the water moving from the land surface to the atmosphere (commonly referred to as transpiration partitioning) at the continental scale. They found that both the total flux of water and transpiration partitioning are connected to water table depth. Because of this connection, including groundwater flow in the model increases transpiration partitioning from 47±13% to 62±12%. This finding suggests that groundwater flow, which is generally simplified or excluded from other continental-scale simulations, may provide a missing link to reconciling observations and global models of terrestrial water fluxes.

BER PM Contact
David Lesmes, SC-23.1, 301-903-2977
Paul Bayer, SC-23.1, 301-903-5324

Contact
Reed Maxwell
Colorado School of Mines
Rmaxwell@mines.edu

Laura Condon
Syracuse University
lecondon@syr.edu

Funding
This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research and Office of Advanced Scientific Computing through the Interoperable Design of Extreme-scale Application Software (IDEAS) project. Simulations were made possible through support from Yellowstone at the National Center for Atmospheric Research Computational and Information Systems Laboratory.

Publication
Maxwell, R. M., and L. E. Condon. 2016. “Connections Between Groundwater Flow and Transpiration Partitioning,” Science, DOI: 10.1126/science.aaf7891. (Reference link)

Topic Areas:

  • Research Area: Climate and Earth System Modeling
  • Research Area: Subsurface Biogeochemical Research
  • Cross-Cutting: Scientific Computing and SciDAC
  • Mission Science: Climate

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

Recent Highlights

Jan 25, 2017
Building Confidence in Hydrologic Models
Model intercomparison project evaluates performance of seven different integrated hydrology mode [more...]

Jan 24, 2017
Sorption to Organic Matter Controls Uranium Mobility
Organic matter controls uranium mobility. The Science  
more...]

Dec 14, 2016
Clay Minerals and Metal Oxides Can Change How Uranium Travels Through Sediments
The molecular form of reduced uranium in the subsurface is affected by common sediment constitue [more...]

Oct 25, 2016
Future Climate Warming Induces Emergence of New Hydrologic Regimes of Surface Water Resources in the Conterminous United States
Global warming poses great challenges to the future U.S. surface water supply. [more...]

Sep 01, 2016
Reconciling Observations and Global Models of Terrestrial Water Fluxes
Water table depth and groundwater flow are key to understanding the amount of water that plants [more...]