U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Abiotic Pathway Makes Organic Nitrogen Compounds Available to Microbes and Plants
Published: March 15, 2016
Posted: July 22, 2016

Manganese oxides found in some minerals interact with proteins to release organic nitrogen compounds into soils.

The Science
The ability of plants and microorganisms to take up organic nitrogen in the form of amino acids and peptides has received increasing attention over the last two decades, yet mechanisms for the formation of such compounds in soil environments remain poorly understood. A new study reveals that manganese oxides found in some minerals fragment proteins to produce soluble peptides that are released into the soil and could be directly taken up by microbes and plants.

The Impact
The study reveals how mineral-mediated, abiotic processes could produce small peptides that could contribute to the availability of organic nitrogen to plants and microorganisms. Understanding the mechanism by which nitrogen is made bioavailable is key to understanding nutrient cycling within terrestrial ecosystems.

Understanding patterns of protein abundance and diversity is critical for assessing soil ecosystem function. Unclear, however, is how minerals interact with proteins to affect nitrogen availability in soil environments. To address this question, a team of scientists from Oregon State University, Environmental Molecular Sciences Laboratory, and Leibniz Zentrum für Agrarlandschaftsforschung characterized reactions of a model protein called Gb1 with a mineral that contains manganese oxide (birnessite) and one that does not (kaolinite). They used nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopies at EMSL, a Department of Energy (DOE) scientific user facility. Their findings suggest that a mineral’s impact on a protein depends on the type of mineral present in the environment. In contrast to kaolinite, the manganese oxide-containing birnessite fragmented Gb1 to produce soluble peptides available to soil biota. The results confirm the existence of an abiotic pathway for the formation of organic nitrogen compounds for direct uptake by plants and microorganisms, highlighting the potential influence abiotic protein degradation could have on soil nitrogen turnover and bioavailability. Moreover, the study highlights NMR and EPR spectroscopies as valuable tools to observe reactions between proteins and minerals to shed light on soil ecosystem function.

BER PM Contact
Paul Bayer, SC-23.1, 301-903-5324

PI Contact
Markus Kleber
Oregon State University

This work was supported by DOE’s Office of Science, Office of Biological and Environmental Research, including support of EMSL, a DOE Office of Science user facility at Pacific Northwest National Laboratory; the William Wiley Distinguished Postdoctoral Fellowship at EMSL; and a research fellowship from the Institut fuer Bodenlandschaftsforschung, Leibniz Zentrum für Agrarlandschaftsforschung.

Reardon, P. N., S. S. Chacon, E. D. Walter, M. E. Bowden, N. M. Washton, and M. Kleber. 2016. “Abiotic Protein Fragmentation by Manganese Oxide: Implications for a Mechanism to Supply Soil Biota with Oligopeptides,” Environmental Science and Technology 50(7), 3486-93. DOI: 10.1021/acs.est.5b04622. (Reference link)

Related Links
News article

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)