U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Improving Lipid Yields for Biofuel Production
Published: February 25, 2016
Posted: June 16, 2016

New insights into lipid metabolism in yeast could benefit biofuel production.

The Science
Using a comprehensive system-wide approach, researchers identified regulators of metabolic pathways that drive lipid accumulation in a genetically tractable yeast species.

The Impact
A better understanding of the metabolic pathways that regulate lipid accumulation in yeast could be harnessed to improve lipid yields and enhance the efficiency of biofuel production.

Summary
The yeast Yarrowia lipolytica is capable of accumulating a large amount of lipids when nitrogen is limited. This ability, along with its amenability to genetic methods, has made Y. lipolytica an attractive model for generating high-value lipids for biofuel production. However, relatively little is known about the factors that regulate enzymatic pathways responsible for lipid accumulation in this species. To address this knowledge gap, a team of researchers from Pacific Northwest National Laboratory (PNNL) integrated metabolome, proteome, and phosphoproteome data to characterize lipid accumulation in response to limited nitrogen in Y. lipolytica. The researchers used a microscopy system that integrates nonlinear two-photon excitation, laser-scanning confocal microscopy, and fluorescence lifetime imaging at the Environmental Molecular Sciences Laboratory (EMSL), a U.S. Department of Energy (DOE) scientific user facility. In this first global study of protein phosphorylation in Y. lipolytica, the researchers focused their analysis on changes in the expression and phosphorylation state of regulatory proteins, including kinases, phosphatases, and transcription factors. They found that lipid accumulation in response to nitrogen limitation results from two distinct processes: (1) higher production of malonyl-CoA from excess citrate increases the pool of building blocks for lipid production, and (2) decreased capacity for β-oxidation reduces lipid consumption. These findings provide new genetic targets that could be manipulated to improve lipid yields in future metabolic engineering efforts.

Contacts
(BER PM Contact)
Paul Bayer, SC-23.1, 301-903-5324

(PI Contact)
Scott E. Baker
EMSL
Scott.Baker@pnnl.gov
509-372-4759

Funding
This work was supported by DOE’s Office of Science, Office of Biological and Environmental Research (BER), including support of EMSL, an Office of Science user facility; BER Genomic Science program; William Wiley Distinguished Postdoctoral Fellowship; and BER-funded Pan-omics program at PNNL.

Publication
Pomraning, K. R., Y.-M. Kim, C. D. Nicora, R. K. Chu, E. L. Bredeweg, S. O. Purvine, D. Hu, T. O. Metz, and S. E. Baker. 2016. “Multi-Omics Analysis Reveals Regulators of the Response to Nitrogen Limitation in Yarrowia lipolytica,” BMC Genomics 17(138). DOI: 10.1186/s12864-016-2471-2. (Reference link).

Topic Areas:

  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: Biosystems Design

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)