U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Black Carbon and Dust Radiative Forcing in Seasonal Snow: A Case Study over North China
Published: November 03, 2014
Posted: May 23, 2016

On a large scale, snow regulates the temperature of Earth’s surface and alters the general circulation of the climate. At a smaller scale, it affects regional climate and water resources. Light-absorbing particles, primarily black carbon (BC), brown carbon, and dust, impact how well the snow reflects light, thereby influencing Earth’s albedo. Researchers, led by scientists at the Department of Energy’s Pacific Northwest National Laboratory, used a regional modeling framework to simulate BC and dust and their direct radiative forcing in snowpack. They found that the simulations are consistent in spatial variability with observations for black carbon and dust mass concentrations (BCS and DSTS, respectively) in the top snow layer, while they underestimate BCS in clean regions and overestimate BCS in some polluted regions. BCS and DSTS result in a similar magnitude of radiative warming in the snowpack, which is comparable to the amount of surface radiative cooling due to BC and dust in the atmosphere. To produce the simulations, the research used the Weather Research and Forecasting (WRF) model, a state-of-the-art regional model with a chemistry component. They coupled it with the snow, ice, and aerosol radiative (SNICAR) model that includes the most sophisticated representation of snow metamorphism processes available for climate study. The coupled model simulated black carbon and dust concentrations and their radiative forcing in seasonal snow over North China in January through February 2010, with extensive field measurements used to evaluate the model performance. The findings highlight a need for more observations, particularly concurrent measurements of atmospheric and snow aerosols and the deposition aerosol fluxes, in future campaigns.

Reference: Zhao, C., Z. Hu, Y. Qian, R. Leung, J. Huang, M. Huang, J. Jin, M. Flanner, R. Zhang, H. Wang, H. Yan, Z. Lu, and D. G. Streets. 2014. “Simulating Black Carbon and Dust and Their Radiative Forcing in Seasonal Snow: A Case Study over North China with Field Campaign Measurements,” Atmospheric Chemistry and Physics 14, 11475–491. DOI: 10.5194/acp-14-11475-2014. (Reference link)

Contact: Renu Joseph, SC-23.1, (301) 903-9237, Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)