BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Influence of Sea Salt Variability on Clouds
Published: February 21, 2015
Posted: May 23, 2016

The aerosol indirect effect, by altering cloud radiative forcing, is one of the largest uncertainties in understanding climate change. Researchers, including Department of Energy scientists at Pacific Northwest National Laboratory, examined multi-year climate variability associated with sea salt aerosols and their contribution to the variability of pre-industrial shortwave cloud forcing (SWCF) using a 150-year simulation of the Community Earth System Model version 1.0 (CESM1). The results suggest that changes in sea salt and related cloud and radiative properties on interannual timescales are dominated by the El Niño-Southern Oscillation (ENSO) cycle. Sea salt variability on longer timescales is associated with low-frequency variability in the Pacific Ocean similar to the Interdecadal Pacific Oscillation, but does not show a statistically significant spectral peak. The researchers found that sea salt aerosol variability may contribute to short-wave cloud forcing (SWCF) variability in the tropical Pacific, explaining up to 20 percent to 30 percent of the variance in that region. Elsewhere, there is only a small sea salt aerosol influence on SWCF through modifying cloud droplet number and liquid water path that contributes to the change of cloud effective radius and cloud optical depth (and hence cloud albedo), producing a multi-year aerosol-cloud-wind interaction.

Reference: Xu, L., D. W. Pierce, L. M. Russell, A. J. Miller, R. C. J. Somerville, C. H. Twohy, S. J. Ghan, B. Singh, J. H. Yoon, and P. J. Rasch. 2015. “Interannual to Decadal Climate Variability of Sea Salt Aerosols in the Coupled Model CESM1.0,” Journal of Geophysical Research Atmospheres 120(4), 1502–19. DOI:10.1002/2014JD022888. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)