U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Long-term Trend and Sources of Carbonaceous Particles Measured in a Southeastern Tibetan Glacier
Published: February 02, 2015
Posted: May 23, 2016

Black carbon (BC) and organic carbon (OC) particles—from forest fires, diesel engines, and other fuel combustion—ride on atmospheric currents and reach high and remote places such as the Tibetan Plateau, affecting snow melt and glaciers, which, in turn, record the history of these particles. Researchers at the Department of Energy’s Pacific Northwest National Laboratory and Institute of Tibetan Plateau Research (Chinese Academy of Sciences) designed a new way to identify sources of these particles and the cause of their historical trend in a Tibetan glacier using a tracer tagging technique in a climate model [Community Atmosphere Model version 5 (CAM5)]. They analyzed high temporal resolution measurements of BC and OC covering the time period of 1956 to 2006 in an ice core over the southeastern Tibetan Plateau that show a distinct seasonal dependence of BC and OC with higher respective concentrations but a lower OC/BC ratio in the non-monsoon season than during the summer monsoon. Using a global aerosol-climate model, in which BC emitted from different source regions can be explicitly tracked, they quantified BC source–receptor relationships between four Asian source regions and the southeastern Tibetan Plateau as a receptor.

The model results showed that BC recorded in the southeastern Tibetan glacier primarily originated in South Asia primarily during the non-monsoon season (October to May), followed by East Asia during the summer monsoon (June to September). The ice core record also indicates stable and relatively low BC and OC deposition fluxes from the late 1950s to 1980, followed by an overall increase to recent years, a trend consistent with the BC and OC emission inventories and fuel consumption of South Asia. Moreover, the increasing trend of the OC/BC ratio since the early 1990s indicates a growing contribution of coal combustion and biomass burning to the emissions. The estimated radiative forcing induced by BC and OC impurities in snow has increased since 1980, suggesting an increasing influence of carbonaceous aerosols on the Tibetan glacier melting and the availability of water resources in the surrounding regions. The findings contribute to insights into the impact of carbonaceous particles on glacier melting and potential mitigation actions.

Reference: Wang, M., B. Xu, J. Cao, X. Tie, H. Wang, R. Zhang, Y. Qian, P. J. Rasch, S. Zhao, G. Wu, H. Zhao, D. R. Joswiak, J. Li, and Y. Xie. 2015. “Carbonaceous Aerosols Recorded in a Southeastern Tibetan Glacier: Analysis of Temporal Variations and Model Estimates of Sources and Radiative Forcing,” Atmospheric Chemistry and Physics 15, 1191–1204. DOI: 10.5194/acp-15-1191-2015. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)