BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Long-term Trend and Sources of Carbonaceous Particles Measured in a Southeastern Tibetan Glacier
Published: February 02, 2015
Posted: May 23, 2016

Black carbon (BC) and organic carbon (OC) particles—from forest fires, diesel engines, and other fuel combustion—ride on atmospheric currents and reach high and remote places such as the Tibetan Plateau, affecting snow melt and glaciers, which, in turn, record the history of these particles. Researchers at the Department of Energy’s Pacific Northwest National Laboratory and Institute of Tibetan Plateau Research (Chinese Academy of Sciences) designed a new way to identify sources of these particles and the cause of their historical trend in a Tibetan glacier using a tracer tagging technique in a climate model [Community Atmosphere Model version 5 (CAM5)]. They analyzed high temporal resolution measurements of BC and OC covering the time period of 1956 to 2006 in an ice core over the southeastern Tibetan Plateau that show a distinct seasonal dependence of BC and OC with higher respective concentrations but a lower OC/BC ratio in the non-monsoon season than during the summer monsoon. Using a global aerosol-climate model, in which BC emitted from different source regions can be explicitly tracked, they quantified BC source–receptor relationships between four Asian source regions and the southeastern Tibetan Plateau as a receptor.

The model results showed that BC recorded in the southeastern Tibetan glacier primarily originated in South Asia primarily during the non-monsoon season (October to May), followed by East Asia during the summer monsoon (June to September). The ice core record also indicates stable and relatively low BC and OC deposition fluxes from the late 1950s to 1980, followed by an overall increase to recent years, a trend consistent with the BC and OC emission inventories and fuel consumption of South Asia. Moreover, the increasing trend of the OC/BC ratio since the early 1990s indicates a growing contribution of coal combustion and biomass burning to the emissions. The estimated radiative forcing induced by BC and OC impurities in snow has increased since 1980, suggesting an increasing influence of carbonaceous aerosols on the Tibetan glacier melting and the availability of water resources in the surrounding regions. The findings contribute to insights into the impact of carbonaceous particles on glacier melting and potential mitigation actions.

Reference: Wang, M., B. Xu, J. Cao, X. Tie, H. Wang, R. Zhang, Y. Qian, P. J. Rasch, S. Zhao, G. Wu, H. Zhao, D. R. Joswiak, J. Li, and Y. Xie. 2015. “Carbonaceous Aerosols Recorded in a Southeastern Tibetan Glacier: Analysis of Temporal Variations and Model Estimates of Sources and Radiative Forcing,” Atmospheric Chemistry and Physics 15, 1191–1204. DOI: 10.5194/acp-15-1191-2015. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)