U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Short-Term Time Step Convergence in a Climate Model
Published: February 11, 2015
Posted: May 23, 2016

Due to constraints on computing resources, weather and climate calculations can only be done at finite—and often coarse—temporal resolutions, inevitably causing error. A novel technique, developed by scientists at Pacific Northwest National Laboratory, Sandia National Laboratories, and University of Michigan, efficiently quantified and attributed time-resolution errors in the Community Atmosphere Model version 5 (CAM5). Their work is the first publication to evaluate the time-step convergence, namely the reduction of numerical error as a result of a decrease in time-step length, in its strict mathematical sense, in a full-fledged atmospheric general circulation model. This is also the first attempt in the climate modeling community to quantitatively compare time-stepping errors, associated with different physical processes, in a model’s operational configuration. The team found that the temperature error in CAM5 converges at a rate of 0.4 instead of 1.0, indicating the error does not decrease as quickly as expected when the temporal resolution is increased. They performed sensitivity simulations to evaluate various subgrid-scale physical parameterizations in isolation. These simulations led to the conclusion that the representation of stratiform clouds is the primary source of time-stepping error in CAM5. The research showed that in this model, processes associated with the slowest convergence rates also produced the largest errors and strongest artificial sensitivities. Slow convergence is thus a ‘‘?ag’’ for model components that do not accurately represent the intended physical balance of processes and require more attention for improvement.

Reference: Wan, H., P. J. Rasch, M. A. Taylor, and C. Jablonowski. 2015. “Short-Term Time Step Convergence in a Climate Model,” Journal of Advances in Modeling Earth Systems 7(1), 215–25. DOI: 10.1002/2014MS000368. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)