U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Adjusting Timings for “Superparameterized” Climate Model Atmosphere Simulations
Published: December 17, 2015
Posted: May 23, 2016

Superparameterized models are a new type of atmospheric model used in climate models that capture detailed cloud behavior by embedding a high-resolution cloud-resolving model (CRM) within a climate model gridbox. Superparameterized general circulation models (GCM) are in their infancy, have never been carefully tuned, and are incompletely understood especially in terms of the mechanisms that allow attractive forms of emergent behavior linked to organized deep convection. A recent Department of Energy-supported study explores the effect of reducing the large-scale model time step, which has the byproduct of increasing the frequency with which the planetary versus cloud resolving scales are allowed to interact. The experiments reveal interesting reductions in cloud biases, and a mysterious shift to a climate that has more bottom-heavy tropical convection, stronger rainfall extremes, and more faithfully satisfies the weak-temperature gradient. These results are relevant to understanding convective organization physics and informing climate model development in the next generation of convection-permitting GCMs. 

Reference: Yu, S., and M. Pritchard. 2015. “The Effect of Large-Scale Model Time Step and Multiscale Coupling Frequency on Cloud Climatology, Vertical Structure, and Rainfall Extremes in a Superparameterized GCM,” Journal of Advances in Modeling Earth Systems 7(4), 1977–96. DOI: 10.1002/2015MS000493. (Reference link)

Contact: Renu Joseph, SC-23.1, (301) 903-9237, Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)