U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Improving Model Representation of Convective Transport for Scale-Aware Parameterization
Published: April 27, 2015
Posted: May 19, 2016

Cumulus clouds play an important role in energy and water transfers in the climate system. However, representation of such clouds in the regional and global climate models is one of the major error sources of weather and climate predictions. Using the cloud-resolving modeling (CRM) simulations of convective clouds at the midlatitudes and tropics, a team of scientists, led by a U.S. Department of Energy researcher at Pacific Northwest National Laboratory, found the cumulus cloud fraction and convective transport of moisture by the unsolved cumulus clouds are strongly grid-spacing dependent. The team found that there are strong grid-spacing dependencies of updraft and downdraft fractions regardless of altitudes, cloud life stage, and geographical location. The single updraft approach for representing unsolved cumulus clouds significantly underestimates updraft eddy transport of water vapor because it fails to account for the large internal variability of updrafts, while a single downdraft represents the downdraft eddy transport of water vapor well. The team developed a new representation, accounting for the updraft variability and well representing the convective transport calculated from CRM simulations at different model grid-spacings.

Reference: Liu, Y.-C., J. Fan, G. Zhang, K.-M. Xu, and S. J. Ghan. 2015. “Improving Representation of Convective Transport for Scale-Aware Parameterization: 2. Analysis of Cloud-Resolving Model Simulations,” Journal of Geophysical Research Atmospheres 120(8), 3510-32. DOI: 10.1002/2014JD022145. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)