U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Do Responses to Different Anthropogenic Forcings Add Linearly in Climate Models?
Published: October 14, 2015
Posted: May 19, 2016

Many detection and attribution and pattern scaling studies assume that the global climate response to multiple forcings is additive: the response over the historical period is statistically indistinguishable from the sum of responses to individual forcings. In a recent study, researchers used the National Aeronautics and Space Administration’s Goddard Institute for Space Studies (GISS) and National Center for Atmospheric Research Community Climate System Model (CCSM) simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archive to test this assumption for multiyear trends in global-average, annual-average temperature and precipitation at multiple timescales. Findings show that responses in models forced by pre-computed aerosol and ozone concentrations are generally additive across forcings; however, the study demonstrates that there are significant nonlinearities in precipitation responses to different forcings in a configuration of the GISS model that interactively computes these concentrations from precursor emissions. These nonlinearities are attributed to differences in ozone forcing arising from interactions between forcing agents. Study results suggest that attribution to specific forcings may be complicated in a model with fully interactive chemistry and may provide motivation for other modeling groups to conduct further single-forcing experiments. 

Reference: Marvel, K., G. Schmidt, D. Shindell, C. Bonfils, A. Legrande, L. Nazarenko, and K. Tsigaridis. 2015. “Do Responses to Different Anthropogenic Forcings Add Linearly in Climate Models?” Environmental Research Letters 10(10), 104010. DOI: 10.1088/1748-9326/10/10/104010. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)