U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Global Model Simulation for 3-D Radiative Transfer Impact on Surface Hydrology
Published: May 19, 2015
Posted: May 19, 2016

Orographic forcing is an efficient and dominant mechanism for harnessing water vapor into consumable fresh water in the form of precipitation, snowpack, and runoff. Mountain water resources not only support human activities, but are also vital to diverse terrestrial and aquatic ecosystems. To study the long-term effect of solar radiation effect over three-dimensional (3-D) mountains and snow on surface energy and hydrology, the 3-D radiative transfer parameterization developed for the computation of surface solar fluxes has been incorporated into the Community Climate System Model version 4 [(CCSM4); Community Atmosphere Model version 4 (CAM4)/Community Land Model version 4 (CLM4)] global model and applied at a resolution of 0.23°x0.31° over the Rocky Mountains and Sierra Nevada areas in the western United States. In the 3-D radiative transfer parameterization, the surface topography data have been updated from a resolution of 1 km to 90 meters to improve parameterization accuracy. In addition, the upward-flux deviation [3D–plane-parallel (PP)] adjustment has also been modified to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization. Findings show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of clouds and snow in conjunction with long-term simulations. Deviations in the sensible heat and surface temperature generally follow the patterns of net surface solar flux. Including 3D-mountain effects significantly increases (decreases) solar radiation at higher (lower) elevations, leading to increased (reduced) snowmelt. Combined with precipitation changes influenced by changes in the surface fluxes, runoff is significantly reduced in mountainous regions after the snow accumulation peaks in April. The 3-D mountain effects could have an important impact on vegetation by changing the energy and water available to plants. With the larger differences in solar radiation, soil moisture, and soil temperature developing in late spring and early summer, changes in photosynthetic rate and plant phenology may affect leaf area index and gross primary production. These findings will be further investigated in the future using longer simulations to quantify the 3-D mountain effects on radiation and the impacts on water and carbon cycles and vegetation globally.

Reference: Lee, W.-L., Y. Gu, K. N. Liou, L. R. Leung, and H.-H. Hsu. 2015. “A Global Model Simulation for 3-D Radiative Transfer Impact on Surface Hydrology over the Sierra Nevada and Rocky Mountains,” Atmospheric Chemistry and Physics 15, 5405-13. DOI: 10.5194/acp-15-5405-2015. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)