U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

How Multiscale Interactions Affect Large Tropical Convection Systems
Published: November 23, 2015
Posted: May 06, 2016

The Madden-Julian oscillation (MJO)—a continent-sized cyclic pattern of rainy and dry weather moving slowly eastward across the tropical Indian and Pacific Oceans—is strongly affected by seasonal and year-to-year sea-surface temperature (SST) variations, yet MJO drivers and variability remain a subject of uncertainty and ongoing research. A recent Department of Energy-supported study explored how MJO is impacted by atmospheric interactions across a wide range of space-time scales. The superparameterized Community Atmosphere Model (SPCAM), a modified climate model using a sophisticated approach to explicitly simulate tropical convective clouds fundamental to MJO, is used to explore MJO response to anomalies in seasonal SST distributions associated with the Indian Ocean dipole (IOD). The simulations demonstrate critical new findings: (1) SPCAM reproduces the observed disruption on the MJO signal as it crosses Indonesia, (2) MJO disruption is linked to circulation and moisture anomalies on seasonal time scales as well as variations driven by atmospheric eddies that are active on weekly time scales, and (3) SST perturbations in the equatorial Pacific Ocean, not the Indian Ocean, are the dominant contributor to MJO disruption over Indonesia. Interestingly, IOD-driven MJO weakening does not occur due to local dynamics over the Indian Ocean as might be expected. Rather, the MJO disruption dynamics are traced back to Central Pacific SST perturbations that coexist with the IOD event and seem to be indirectly associated with an El Niño-IOD relationship. This finding has profound implications for understanding MJO’s future based on the future pattern of SSTs.

References: Benedict, J. J., M. S. Pritchard, and W. D. Collins. 2015. “Sensitivity of MJO Propagation to a Robust Positive Indian Ocean Dipole Event in the Superparameterized CAM,” Journal of Advances in Modeling Earth Systems 7(4), 1901-17. DOI: 10.1002/2015MS000530. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)