BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


New Parameterization of Spatial Variability of Rain
Published: July 28, 2015
Posted: May 06, 2016

Rain is patchy—a new formulation captures that variability in models.

The Science
Observations and cloud-resolving models were used to study the spatial variability of rain and develop a new formulation for rain variability in large-scale global climate models.

The Impact
The grid cells of global climate models are often larger than a single rain storm, so the variability in the cloud and rain properties at smaller grid scales must be parameterized within the model. Using radar observations and cloud-resolving model simulations from the Atmospheric Radiation Measurement (ARM) Tropical Warm Pool-International Cloud Experiment (TWP-ICE), scientists evaluated subgrid-scale variability in rain rate over a variety of scales and formulated a parameterization for the surface variability in rain rate that can be used to improve the prediction of rain in large-scale climate models.

Summary
The spatial variability of rain rate R is evaluated by using both radar observations and cloud-resolving model output, focusing on the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) period. In general, the model-predicted rain-rate probability distributions agree well with those estimated from the radar data across a wide range of spatial scales. The spatial variability in R, which is defined according to the standard deviation of R, is found to vary according to both the average of R over a given footprint and the footprint size or averaging scale. There is good agreement between area-averaged model output and radar data at a height of 2.5 km. The model output at the surface is used to construct a scale-dependent parameterization of the spatial variability of rain rate as a function of footprint size and averaging scale that can be readily implemented into large-scale numerical models. The variability in both the rainwater amount and rain rate as a function of height is also explored. From the statistical analysis, a scale- and height-dependent formulation for the spatial variability of both the rainwater amount and rain rate is provided for the analyzed tropical scenario. This research shows how this parameterization can be used to assist in constraining parameters that are often used to describe the surface rain-rate distribution.

Contacts (BER and non-BER)
BER - Sally McFarlane, SC-23.1, 301-903-0943; and Shaima Nasiri, SC-23.1, 301-903-0207

Non-BER:
Zachary Lebo
University of Wyoming
307-766-3245
zlebo@uwyo.edu

Funding
This project was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research.

Publications
Lebo, Z. J., C. R. Williams, G. Feingold, and V. E. Larson. 2015. “Parameterization of the Spatial Variability of Rain for Large-Scale Models and Remote Sensing,” Journal of Applied Meteorology and Climatology 54(10), 2027-46. DOI: 10.1175/jamc-d-15-0066.1. (Reference link)

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research
  • Facility: DOE ARM User Facility

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)