BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Climate Change and Physical Disturbance Cause Similar Community Shifts in Biological Soil Crusts
Published: September 29, 2015
Posted: May 06, 2016

Biological soil crusts (biocrusts)—communities of mosses, lichens, cyanobacteria, and heterotrophs living at the soil surface—are fundamental components of drylands worldwide, and their destruction dramatically alters biogeochemical processes, hydrology, surface energy balance, and vegetation cover. Impacts of physical disturbances on biocrusts (e.g., trampling by livestock and damage from vehicles) have been a long-standing concern, and concern is also increasing over the potential for climate change to alter biocrust community structure. Using long-term data from the Colorado Plateau, a recent study examined the effects of 10 years of experimental warming and altered precipitation on biocrust communities and compared the effects of altered climate with those of long-term physical disturbance (more than 10 years of replicated human trampling). Surprisingly, altered climate and physical disturbance treatments had similar effects on biocrust community structure. Warming, altered precipitation, and physical disturbance from trampling all promoted early successional community states. Although the pace of biocrust community change varied significantly among treatments, these results suggest that multiple aspects of climate change will affect biocrusts to the same degree as physical disturbance. This finding is particularly disconcerting in the context of warming, as temperatures for drylands are projected to increase beyond those imposed as treatments in this study.

Reference: Ferrenberg, S., S. C. Reed, and J. Belnap. 2015. “Climate Change and Physical Disturbance Cause Similar Community Shifts in Biological Soil Crust,” Proceedings of the National Academy of Sciences (USA) 112(39), 12116-121. DOI: 10.1073/pnas.1509150112. (Reference link)

Contact: Jared DeForest, SC-23, (301) 903-3251, Daniel Stover, SC-23.1, (301) 903-0289
Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Microbes and Communities

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)