BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Characterizing the Structural Basis of Stereospecificity in Enzymatic Cleavage of Lignin Bonds
Published: December 04, 2015
Posted: May 02, 2016

Understanding how bacteria digest plant lignin informs engineering efforts to extract value from lignin.  

The Science
To determine the structural basis for stereospecificity of bacterial enzymes involved in lignin bond cleavage, researchers solved the crystal structures of the enzymes involved. The detailed structural and biochemical characterization of the lignin degradation pathway members reveals important new aspects of the enzyme mechanisms and determinants of substrate specificity.

The Impact
Lignin is a combinatorial polymer comprised of monoaromatic units and is a potential source of valuable aromatic chemicals. However, its recalcitrance to chemical or biological digestion presents a major obstacle to the production of second-generation biofuels and other valuable bioproducts. These collaborative studies elucidating mechanisms of lignin degradation may enable the development of efficient pathways for converting lignin into components of advanced biofuels and other bioproducts.      

Lignin’srecalcitrance to chemical or biological digestion presents a major obstacle to the production of second-generation biofuels and valuable coproducts from lignin’s monoaromatic units. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin was reported in the bacterium Sphingobium sp. SYK-6. In a collaborative effort, researchers from the Department of Energy’s (DOE) Great Lakes Bioenergy Research Center (GLBRC) and Joint BioEnergy Institute (JBEI) determined the X-ray crystal structures and biochemical characterizations of several glutathione-dependent β-etherases that participate in the cleavage of lignin. Results from these studies reveal important new aspects of the enzyme mechanisms and the determinants of substrate specificity. As β-aryl ether bonds account for 50 percent to 70 percent of all inter-unit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on lignin valorization.


N. Kent Peters, SC-2.32,, 301-903-5549

(PI Contact)
George N. Phillips, Jr.
Rice University

This work was funded by GLBRC and JBEI (DOE Office of Science, Office of Biological and Environmental Research DE-FC02-07ER64494 and DE-AC02-05CH11231, respectively), additional grants from DOE (Office of Science, Office of Basic Energy Sciences, Contract No. DE-AC02-05CH11231 and DE-AC02-06CH11357), grants from the National Institutes of Health (AGM-12006, GM109456, GM098248, P41GM103399, and S10RR027000), the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (Grant 085P1000817), National Cancer Institute (ACB-12002), and University of Wisconsin-Madison.  

Helmich, K., et al. 2015.  “Structural Basis of Stereospecificity in the Bacterial Enzymatic Cleavage of β-aryl Ether Bonds in Lignin,” The Journal of Biological Chemistry, DOI: 10.1074/jbc.M115.694307. (Reference link)
Pereira, J. H., et al. 2016. “Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-aryl Ether Cleavage Pathway from Sphingobium sp SYK-6,” The Journal of Biological Chemistry, DOI: 10.1074/jbc.M115.700427. (Reference link)

Topic Areas:

  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging

Division: SC-33.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)