BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Characterizing the Structural Basis of Stereospecificity in Enzymatic Cleavage of Lignin Bonds
Published: December 04, 2015
Posted: May 02, 2016

Understanding how bacteria digest plant lignin informs engineering efforts to extract value from lignin.  

The Science
To determine the structural basis for stereospecificity of bacterial enzymes involved in lignin bond cleavage, researchers solved the crystal structures of the enzymes involved. The detailed structural and biochemical characterization of the lignin degradation pathway members reveals important new aspects of the enzyme mechanisms and determinants of substrate specificity.

The Impact
Lignin is a combinatorial polymer comprised of monoaromatic units and is a potential source of valuable aromatic chemicals. However, its recalcitrance to chemical or biological digestion presents a major obstacle to the production of second-generation biofuels and other valuable bioproducts. These collaborative studies elucidating mechanisms of lignin degradation may enable the development of efficient pathways for converting lignin into components of advanced biofuels and other bioproducts.      

Summary
Lignin’srecalcitrance to chemical or biological digestion presents a major obstacle to the production of second-generation biofuels and valuable coproducts from lignin’s monoaromatic units. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin was reported in the bacterium Sphingobium sp. SYK-6. In a collaborative effort, researchers from the Department of Energy’s (DOE) Great Lakes Bioenergy Research Center (GLBRC) and Joint BioEnergy Institute (JBEI) determined the X-ray crystal structures and biochemical characterizations of several glutathione-dependent β-etherases that participate in the cleavage of lignin. Results from these studies reveal important new aspects of the enzyme mechanisms and the determinants of substrate specificity. As β-aryl ether bonds account for 50 percent to 70 percent of all inter-unit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on lignin valorization.

Contacts
(BER PM)

N. Kent Peters, SC-2.32, kent.peters@science.doe.gov, 301-903-5549

(PI Contact)
George N. Phillips, Jr.
Rice University
georgep@rice.edu

Funding
This work was funded by GLBRC and JBEI (DOE Office of Science, Office of Biological and Environmental Research DE-FC02-07ER64494 and DE-AC02-05CH11231, respectively), additional grants from DOE (Office of Science, Office of Basic Energy Sciences, Contract No. DE-AC02-05CH11231 and DE-AC02-06CH11357), grants from the National Institutes of Health (AGM-12006, GM109456, GM098248, P41GM103399, and S10RR027000), the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (Grant 085P1000817), National Cancer Institute (ACB-12002), and University of Wisconsin-Madison.  

Publications
Helmich, K., et al. 2015.  “Structural Basis of Stereospecificity in the Bacterial Enzymatic Cleavage of β-aryl Ether Bonds in Lignin,” The Journal of Biological Chemistry, DOI: 10.1074/jbc.M115.694307. (Reference link)
Pereira, J. H., et al. 2016. “Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-aryl Ether Cleavage Pathway from Sphingobium sp SYK-6,” The Journal of Biological Chemistry, DOI: 10.1074/jbc.M115.700427. (Reference link)

Topic Areas:

  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging

Division: SC-33.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)