U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Groundwater Increases Carbon Emissions from a Tropical Rainforest Stream
Published: December 22, 2015
Posted: May 02, 2016

Discharges of old groundwater can greatly increase carbon dioxide emissions from streams and other surface waters.

The Science
Streams and rivers are increasingly recognized as an important component in the carbon cycle, from local to global scales. A recent study measured carbon dioxide (CO2) and methane (CH4) emissions from tropical rainforest streams in both the wet and dry seasons. Measurements were made in a stream receiving inputs of very old (about 3,000 years) groundwater and in other streams without such inputs.

The Impact
Measuring elevated stream CO2 degassing rates might suggest that an ecosystem has elevated respiration and is a net source (rather than sink) with respect to atmospheric CO2. In ecosystems with inputs of old, high-carbon groundwater, however, knowing that elevated stream CO2 degassing is supported and driven by a large input of nonbiogenic CO2 from old groundwater helps to avoid an overestimation of ecosystem respiration and provides a more accurate picture of the ecosystem’s carbon source and sink status.

CO2 and CH4 degassing was measured in two rainforest streams at La Selva, Costa Rica: one stream fed only by young (<10 years old) local groundwater recharged within the watershed, and another fed by about two-thirds young groundwater and one-third older groundwater (about 3,000 years old) from a large regional aquifer system. Regional groundwater inputs had no measurable effect on stream gas exchange velocity, stream water CH4 concentration, or stream CH4 emissions, but it significantly increased stream water CO2 concentration and degassing. CO2 emissions from the stream receiving regional groundwater averaged 5.5 moles of carbon per m2 of stream surface per day, about 7.5 times higher than the average from the stream with no regional groundwater input. Carbon emissions from both streams were dominated by CO2, with CH4 accounting for only 0.06 percent to 1.70 percent of the total (average CH4 degassing rate from both streams was 0.005 moles of carbon per m2 of stream surface per day). Annual stream degassing fluxes normalized by watershed area were 299 and 48 moles of carbon per m2 of watershed surface in the watersheds with and without inputs of old regional groundwater, respectively. Stream degassing of CO2 is a major carbon flux in the watershed receiving inputs of old regional groundwater, and is similar in magnitude to the average net ecosystem exchange estimated by eddy covariance. Examining the effects of watershed connections to underlying hydrogeological systems can help avoid overestimation of ecosystem respiration and advance understanding of the carbon source and sink status and overall carbon budgets of terrestrial ecosystems.


Daniel Stover, SC-23.1, daniel.stover@science.doe.gov, 301-903-0289; and Jared DeForest, SC-23.1, jared.deforest@science.doe.gov, 301-903-1678

(PI Contact)
David Genereux
North Carolina State University
genereux@ncsu.edu, 919-515-6017

This work was funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem Science program (award DE-SC0006703).

Oviedo-Vargas, D., D. P. Genereux, D. Dierick, and S. F. Oberbauer. 2015. “The Effect of Regional Groundwater on Carbon Dioxide and Methane Emissions from a Lowland Rainforest Stream in Costa Rica,” Journal of Geophysical Research Biogeosciences 120(12), 2579–95. DOI: 10.1002/2015JG003009. (Reference link)

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)