BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Using Bacteria to Achieve High Solubilization of Biomass with Minimal Pretreatment
Published: January 12, 2016
Posted: April 27, 2016

Thermophilic bacteria prove to be efficient biocatalysts for biomass solubilization.

The Science
A comprehensive comparison of lignocellulosic solubilization by various thermophilic bacteria to standard enzyme treatment found microbial solubilization of cellulosic biomass to be more effective, and enhanced by mechanical disruption.

The Impact
Using thermophilic bacteria instead of expensive yeast enzymes to decompose biomass into its sugars for fermentation into biofuels will greatly reduce costs and potentially simplify the process.

Summary
Feedstock recalcitrance is the greatest barrier to cost-effective production of cellulosic biofuels. To overcome this recalcitrance, existing commercial cellulosic ethanol facilities employ thermochemical pretreatment with subsequent addition of fungal cellulase. However, processing cellulosic biomass without thermochemical pretreatment may be possible using thermophilic, cellulolytic bacteria. Researchers at the Department of Energy’s (DOE) BioEnergy Science Center (BESC) examined the ability of various thermophilic bacteria to solubilize autoclaved, but otherwise unpretreated cellulosic biomass. Carbohydrate solubilization of mid-season harvested switchgrass after 5 days ranged from 24 percent to 65 percent, with Clostridium thermocellum showing the best results among the four thermophiles tested. This finding was as much as fivefold better than with the standard method using a fungal cellulase cocktail and yeast fermentation. Other findings showed that there was equal fractional solubilization of glucan and xylan, and, importantly, that there was no biological solubilization of the noncarbohydrate fraction of biomass. A fivefold improvement over standard treatment was observed when using the most effective biocatalyst. Using thermophilic bacteria in biomass-solubilizing systems may enable a reduction in the amount of nonbiological processing required and, in particular, substitution of cotreatment for pretreatment.

Contacts (BER PM)
N. Kent Peters, SC-23.2, kent.peters@science.doe.gov, 301-903-5549

(PI Contact)
Lee Lynd
Professor, Thayer School of Engineering, Dartmouth College
lee.lynd@dartmouth.edu

Funding
This research was sponsored by BESC, a DOE Bioenergy Research Center supported by the Office of Biological and Environmental Research within DOE's Office of Science. TYN was supported by the National Science Foundation. The generation of the CCRC series of plant cell wall glycan-directed monoclonal antibodies used was supported by NSF's Plant Genome Program.

Publication
Paye, J. M. D., et al. 2016. “Biological Lignocellulose Solubilization: Comparative Evaluation of Biocatalysts and Enhancement via Cotreatment,” Biotechnology for Biofuels 9(8), DOI 10.1186/s13068-015-0412-y. (Reference link)

Topic Areas:

  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)

Division: SC-33.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)