BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Two-Column Aerosol Project: Impact of Elevated Particle Layers on Particle Optical Depth
Published: January 08, 2016
Posted: April 27, 2016

Scientists gain insights into aerosol properties near the North American coast.

The Science  
Key knowledge gaps persist in the scientific understanding of how aerosol particles and clouds evolve and affect climate. A recent study near Cape Cod highlighted the impact of airborne aerosol layers on the amount of sunlight reaching Earth’s surface.

The Impact
Data collected during the Two-Column Aerosol Project (TCAP) better represent the importance of accounting for mixtures of different compounds in atmospheric particles and how these mixtures affect aerosol particle optical properties over a deep layer of the atmosphere where human-caused effects are expected to be the largest, as well as in a geographic area where model uncertainties are a significant concern.

TCAP was designed to provide a detailed set of observations to tackle an area of unknowns about aerosol particle optical properties in an area where human-caused effects are present. A team of researchers led by Department of Energy (DOE) scientists at Pacific Northwest National Laboratory (PNNL) organized a year-long deployment of the Atmospheric Radiation Measurement (ARM) Mobile Facility to Cape Cod, Massachusetts, for the 12-month duration of the TCAP project. The surface measurements were augmented by two separate one-month long deployments of the ARM Aerial Facility (AAF), one in the summer and one in winter. Few datasets currently combine the range of detailed measurements like those made during TCAP over a range of seasons; in particular, measurements to examine the chemical composition of aerosol particles, their optical properties, and their ability to act as seeds for cloud drops. Using the AFF data, the team found that elevated layers of aerosols occurred on four of six cloud-free days sampled during the summer deployment period. These layers, with increased amounts of biomass burning material and nitrate compared to aerosol at other altitudes, have a large impact on the amount of sunlight reaching Earth’s surface. This TCAP data will be used to better constrain regional and global models.

Contacts (BER PM)
Ashley Williamson, SC-23.1,, 301-903-3120; Shaima Nasiri, SC-23.1,, 301-903-0207; Sally McFarlane, SC-23.1,, 301-903-0943; and Rick Petty, SC-23.1,, 301-903-5548.

(PI Contact)
Larry Berg
PNNL, 509-375-3916

This research was supported by the National Oceanic and Atmospheric Adminstration’s GOES-R Cal/Val Activities within the National Environmental Satellite, Data, and Information Service; DOE Office of Science, Office of Biological and Environnmental Research, ARM and Atmospheric System Research programs (DE-SC0006080). PNNL is operated by DOE by the Battelle Memorial Institute under contract DE-A06-76RLO 1830.

Berg, L. K., J. D. Fast, J. C. Barnard, S. P. Burton, B. Cairns, D. Chand, J. Comstock, S. Dunagan, R. Ferrare, C. Flynn, J. Hair, C. Hostetler, J. Hubbe, A. Jefferson, R. Johnson, E. Kassianov, C. Kluzek, P. Kollias, K. Lamer, K. Lantz, F. Mei, M. Miller, J. Michalsky, I. Ortega, M. Pekour, R. Rogers, P. Russell, J. Redemann, A. Sedlacek, M. Segal-Rosenheimer, B. Schmid, J. Shilling, Y. Shinokuza, S. Springston, J. Tomlinson, M. Tyrell, J. Wilson, R. Volkamer, A. Zelenyuk, and C. Berkowitz. 2016. “The Two-Column Aerosol Project: Phase I Overview and Impact of Elevated Aerosol Layers on Aerosol Optical Depth,” Journal of Geophysical Research: Atmospheres 121(1), 336–61. DOI: 10.1002/2015JD023848. (Reference link)

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research
  • Facility: DOE ARM User Facility

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)