BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Leaf Development and Demography Explain Photosynthetic Seasonality in Amazon Evergreen Forests
Published: February 26, 2016
Posted: April 27, 2016

Cameras show how synchronized birth and death of leaves in the dry season drive increases in photosynthesis and reconcile ground- and satellite-based observations.

The Science  
Scientists used special tower-mounted cameras to discover that synchronization of leaf birth and death in evergreen forest trees across broad areas of the Brazilian Amazon is the cause of strong dry season increases in tropical forest photosynthesis. Furthermore, careful re-analysis of satellite data shows that, contrary to previous reports indicating that dry season increases in Amazon forest greenness may be an artifact of sun-sensor geometry problems, satellite observations do in fact show statistically significant dry-season greenup.

The Impact
These findings about how forests regulate their seasonal “breathing in” of atmospheric carbon dioxide help reconcile the seeming discrepancy between large seasonal changes in photosynthesis seen from towers on the ground versus the smaller changes in “greenness” seen from satellites in space. These findings will also help scientists better understand how climate influences these forests and more accurately predict how they will respond to future climate change.

In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in the Amazon, this work shows that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.

Contacts (BER PM)
Daniel Stover, SC-23/1,, 301-903-0289; and Jared DeForest, SC-23.1,, 301-903-1678

(PI Contact)
Scott Saleska
Associate Professor, Ecology and Evolutionary Biology, University of Arizona, 520-461-3330

Funding was provided by the National Science Foundation’s Partnerships for International Research and Education (0730305); National Aeronautics and Space Administration’s Terra-Aqua Science program (NNX11AH24G); and GOAmazon project, funded jointly by the U.S. Department of Energy (DE-SC0008383) and Brazilian state science foundations in Sao Paulo state (FAPESP) and Amazônas state (FAPEAM).

Wu, J., et al. “Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests.” Science 351, 972–76 (2016). [DOI: 10.1126/science.aad5068]. (Reference link)
Saleska, S. R., et al. “Dry–season greening of Amazon forests.” Nature 531, E4–E5 (2016). [DOI: 10.1038/nature16457]. (Reference link)

Related Links

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)