U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Assessing the Importance of Spatial Scale in Long-Term Land-Use Modeling over the Midwestern United States
Published: August 12, 2015
Posted: January 05, 2016

As land-use models used for understanding climate change mitigation and adaptation responses increase in sophistication, the spatial scales have become more resolved. In addition to allowing finer-scale analysis of land-use trends, increasing spatial resolution also may lead to different model outcomes at regional and global scales. A study by Department of Energy researchers at Pacific Northwest National Laboratory (PNNL) isolated the impacts of increased resolution on regional-scale model outcomes in the agriculture and land-use component of PNNL’s Global Change Assessment Model (GCAM). The work presents a new method for visualizing and analyzing data from land-use models, which typically contain too many output variables to be assessed simultaneously. To address this problem, the team applied statistical methods developed by ecologists for analyzing ecosystem differences across environmental gradients to model output, using a set of scenarios differentiated by land-use region size and greenhouse gas emissions mitigation levels. Specifically, nonmetric, multidimensional scaling is applied to a pair-wise distance matrix, collapsing variability along eight different land-cover classes and six scenarios into a two-dimensional coordinate plane. The study demonstrated that land-use regions in GCAM should be climatically and physiographically homogeneous to prevent infeasible transitions in land-use types. The researchers found that for studies focused on broad-scale trends, there is little apparent benefit to push enhancements in spatial resolution. In future studies, the team will focus on the importance of country-to-region assignments in land-use and energy modeling, and the consequences of such groupings for future emissions mitigation assessments.

Reference: Kyle, P., A. Thomson, M. Wise, and X. Zhang. 2015. “Assessment of the Importance of Spatial Scale in Long-Term Land Use Modeling of the Midwestern United States,” Environmental Modelling and Software 72, 261–71. DOI: 10.1016/j.envsoft.2015.06.006. (Reference link)

Contact: Bob Vallario, SC 23.1, (301) 903-5758
Topic Areas:

  • Research Area: Multisector Dynamics (formerly Integrated Assessment)

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)