U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Effects of Cloud Model Formulation on Precipitation at Global and Local Scales
Published: April 10, 2015
Posted: December 11, 2015

Predicting future climate change remains a high priority as well as a complex challenge for science. Insufficient physical understanding and relatively coarse grid resolution limit the ability of global circulation models (GCMs) in this endeavor. Despite increased computational power enabling higher resolution, GCMs still must rely on parameterizations (computational methods to simplify complex physical processes) to represent the subgrid variability of clouds, aerosols, and their interactions. In research led by Department of Energy scientists at Pacific Northwest National Laboratory, scientists investigated the sensitivity of precipitation characteristics (mean, extreme, and diurnal cycle) to dozens of uncertain parameters mainly related to cloud and aerosol processes in the Community Atmosphere Model ( CAM version 5). They found that extreme precipitation characteristics are sensitive to a fewer number of parameters, precipitation does not always respond monotonically to parameter change, and the influence of individual parameters does not depend on sampling approaches or related parameters selected. The study was a fast-process investigation responding to parameter perturbation in the current climate, over a 5-year period with prescribed sea surface temperatures. The study better explains the CAM5 model behavior associated with parameter uncertainties and will guide the next step to reducing model uncertainty in precipitation via calibration of the most uncertain model parameters and developing new parameterizations.

Reference: Qian, Y., H. Yan, Z. Hou, G. Johannesson, S. A. Klein, D. Lucas, R. Neale, P. J. Rasch, L. P. Swiler, J. Tannahill, H. Wang, M. Wang, and C. Zhao. 2015.  “Parametric Sensitivity Analysis of Precipitation at Global and Local Scales in the Community Atmosphere Model CAM5,” Journal of Advanced Modeling Earth Systems 7(2), 382–411. DOI: 10.1002/2014MS000354. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)