BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Probing Mechanisms Driving Model Resolution Dependence of Aerosol-Cloud Effects
Published: June 23, 2015
Posted: December 11, 2015

Aerosols affect clouds in several ways, including influencing the number and size of cloud droplets, and therefore cloud radiative properties and lifetime (aerosol “indirect effects”). Although these effects occur at subgrid scale, increasing model resolution to 0.25° grid spacing, improvements in the cloud simulation may enable improved simulation of aerosol-cloud effects. A team of scientists led by U.S. Department of Energy researchers at Pacific Northwest National Laboratory quantified the resolution sensitivity of cloud and precipitation susceptibilities to aerosols, as well as aerosol indirect forcing in the Community Atmosphere Model Version 5 (CAM5). The team ran the model in a realistic climate at four different horizontal grid spacings with the model meteorology strongly nudged toward the very high-resolution Year Of Tropical Convection analysis. They found that aerosol effects on clouds vary with model resolution. A better characterization of aerosol-cloud interactions can be achieved by increasing model resolution as the CAM5 aerosol and cloud parameterizations are able to produce more realistic simulations with the higher-resolution model, despite the fact that most aerosol and cloud processes are still at subgrid scale even for the highest resolution explored in this study. The higher-resolution simulation has a stronger cloud brightness effect, but smaller cloud lifetime effect, with an overall 15% decrease in aerosol-cloud (cooling) effect.

Reference: Ma, P.-L., P. J. Rasch, M. Wang, H. Wang, S. J. Ghan, R. C. Easter, W. I. Gustafson Jr., X. Liu, Y. Zhang, and H.-Y. Ma. 2015. “How Does Increasing Horizontal Resolution in a Global Climate Model Improve the Simulation of Aerosol-Cloud Interactions?” Geophysical Research Letters 42, 5058–65. DOI: 10.1002/2015GL064183. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)