U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Global Prevalence and Distribution of Genes and Microbes involved in Mercury Methylation
Published: October 09, 2015
Posted: November 25, 2015

It is well known that the methylation of mercury (Hg) is mediated by bacteria and produces neurotoxic methylmercury (MeHg), which is also highly bioaccumulative in living organisms. However, the specific environments or locations in which MeHg is created are not well understood or identified. The recent finding of the specific genes (hgcAB) involved in Hg methylation provides a potential tool for scientists to identify the specific environments or locations where MeHg is created. Because the hgcAB genes are highly conserved, a team of scientists from Oak Ridge National Laboratory, Smithsonian Environmental Research Center, and Texas A&M University realized that they had a foundation for broadly evaluating spatial and niche-specific patterns of microbial Hg-methylation potential in natural environments. The team primarily used assembled and annotated data publicly available from the Department of Energy’s Joint Genome Institute to query hgcAB diversity and distribution in >3,500 publically available microbial metagenomes, encompassing a broad range of global environments. The hgcAB genes were found in nearly all anaerobic, but not aerobic, environments including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human and mammalian microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate digestive tracts, thawing permafrost, coastal “dead zones,” soils, sediments, and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups capable of Hg methylation emerged, including lineages having no cultured representatives. Phylogenetic analysis points to an evolutionary relationship between hgcA and genes encoding the corrinoid iron-sulfur proteins functioning in the ancient Wood-Ljungdahl carbon fixation pathway, suggesting that methanogenic archaea may have been the first to perform these biotransformations.

References: Podar, M., C. C. Gilmour, C. C. Brandt, A. Soren, S. D. Brown, B. R. Crable, A. V. Palumbo, A. C. Somenahally, and D. A. Elias. 2015. “Global Prevalence and Distribution of Genes and Microorganisms involved in Mercury-Methylation,” Science Advances 1(9), e1500675.  DOI: 10.1126/sciadv.1500675. (Reference link)
See also ORNL News Release.

Contact: Paul E. Bayer, SC-23.1, (301) 903-5324
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: DOE Joint Genome Institute (JGI)

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)