BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Fog and Rain in the Amazon
Published: September 15, 2015
Posted: November 25, 2015

The diurnal and seasonal water cycles in the Amazon remain poorly simulated in general circulation models. Simulations using existing models exhibit peak evapotranspiration during the wrong season and rain occurring too early in the day. A team of researchers supported by the Terrestrial Ecosystem Science and Atmospheric System Research programs and using data from the GOAmazon campaign show that those biases are not present in an approach opposite to that taken by general circulation models, in which they resolve convection and parameterize large-scale circulation as a function of the resolved convection.

The ability to simulate the seasonality of the hydrologic cycle in the Amazon using this approach is attributed to (1) the representation of the morning fog layer, and (2) more accurate characterization of convection and its coupling with large-scale circulation. The morning fog layer, present during the wet season, but absent in the dry season, dramatically increases cloud albedo, which reduces evapotranspiration through its modulation of the surface energy budget. These results highlight the importance of the coupling between the energy and hydrological cycles and the key role of cloud albedo feedback for climates over tropical continents. The study indicates understanding of tropical climates over land can be considerably advanced by using coupled land–atmosphere models with explicit convection and parameterized large-scale dynamics.

Reference: Anber, U., P. Gentine, S. Wang, and A. H. Sobel. 2015. “Fog and Rain in the Amazon,” Proceedings of the National Academy of Sciences (USA) 112(37), 11,473–477. DOI: 10.1073/pnas.1505077112. (Reference link)

Contact: Sally McFarlane, SC-23.1, (301) 903-0943, Daniel Stover, SC-23.1, (301) 903-0289, Ashley Williamson, SC-23.1, (301) 903-3120
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research
  • Research Area: Terrestrial Ecosystem Science

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)