U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Sustained Carbon Uptake and Storage Following Moderate Disturbance in a Great Lakes Forest
Published: July 04, 2015
Posted: November 03, 2015

Carbon uptake rates in many forests are sustained, or decline only briefly, following disturbances that partially defoliate the canopy. The mechanisms supporting such functional resistance to moderate forest disturbance are largely unknown. Researchers used a large-scale experiment to identify mechanisms sustaining carbon uptake through partial canopy defoliation. The Forest Accelerated Succession Experiment in northern Michigan employs a suite of carbon-cycling measurements within paired treatment and control meteorological flux tower footprints. They found that enhancement of canopy light-use efficiency and maintenance of light absorption maintained net ecosystem production and aboveground wood net primary production (NPP) when leaf-area index (LAI) of the treatment forest temporarily declined by nearly half its maximum value. In the year following peak defoliation, redistribution of nitrogen in the treatment forest from senescent early successional aspen and birch to nongirdled later successional species facilitated the recovery of total LAI to predisturbance levels. Sustained canopy physiological competency following disturbance coincided with a downward shift in maximum canopy height, indicating that compensatory photosynthetic carbon uptake by undisturbed, later successional subdominant and subcanopy vegetation supported carbon-uptake resistance to disturbance. These findings have implications for ecosystem management and modeling, demonstrating that forests may tolerate considerable leaf-area losses without diminishing rates of carbon uptake. They conclude that the resistance of carbon uptake to moderate disturbance depends not only on replacement of lost leaf area, but also on rapid compensatory photosynthetic carbon uptake during defoliation by emerging later successional species.

Reference: Gough, C. M., B. S. Hardiman, L. E. Nave, G. Bohrer, K. D. Maurer, C. S. Vogel, K.J. Nadelhoffer, and P. S. Curtis. 2013. “Sustained Carbon Uptake and Storage Following Moderate Disturbance in a Great Lakes Forest,” Ecological Applications 23(5), 1202–15. (Reference link)

Contact: Jared DeForest, SC-23, (301) 903-3251, Daniel Stover, SC-23.1, (301) 903-0289
Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)