U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Identifying Specific Preferences in Organic Compound Consumption by Desert Soil Microbes
Published: September 22, 2015
Posted: September 24, 2015

Every natural soil ecosystem hosts a great diversity of microbes that consume complex organic matter and transform it to simpler small carbon compounds (metabolites) or gaseous endproducts such as carbon dioxide. This decompositional microbial activity transforms organic compounds in the soil, playing a critical role in the global carbon cycle. To determine the functional characteristics of a microbial community’s different members, it is necessary to understand the complex mixture of metabolites present in their environment and to determine which compounds are preferentially consumed by each microorganism. Researchers at Lawrence Berkeley National Laboratory and collaborating institutions have used new exometabolomics techniques to quantitatively analyze the compounds consumed by seven bacterial species isolated from soil crusts in the desert environment of the Colorado Plateau. In these arid environments, most of the organic matter is produced by photosynthetic bacteria and released in the form of metabolites that other microbes can consume and further transform. The investigators discovered that each of the seven species consumes only 13% to 26% of the nearly 500 metabolites produced by these bacteria, and only 0.4% of the metabolites are used by all of them. These different feeding habits may represent a form of ecological niche specialization and may play important roles in maintaining non-overlapping diversity within microbial consortia. This study constitutes a significant advance in our understanding of how microbes in terrestrial ecosystems transform soil organic matter and may affect atmospheric carbon dioxide levels.

Reference: Baran, R., E. Brodie, J. Mayberry-Lewis, E. Hummel, U. N. Da Rocha, R. Chakraborty, B. Bowen, U. Karaoz, H. Cadillo-Quiroz, F. Garcia-Pichel, and T. Northen. 2015. “Exometabolite Niche Partitioning Among Sympatric Soil Bacteria,” Nature Communications 6(8289), DOI:10.1038/ncomms9289. (Reference link)

Contact: Pablo Rabinowicz, SC-23.2 (301) 903-0379
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)