BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Engineering Restricted Lignin and Enhanced Sugar Deposition in Secondary Cell Walls Enhances Monomeric Sugar Release
Published: July 04, 2015
Posted: September 01, 2015

Lignocellulosic biomass has the potential to be a major source of renewable sugar for biofuel production. However, the lignin component, a complex and interlinked phenolic polymer, associates with secondary cell wall polysaccharides, rendering them less accessible to enzymatic hydrolysis to convert them to sugars. Therefore, before enzymatic hydrolysis, biomass must first be pretreated to make it more susceptible to saccharification and release high yields of fermentable sugars. To reduce the impact of lignin on limiting saccharification, researchers at the Department of Energy’s Joint BioEnergy Institute (JBEI) engineered Arabidopsis lines where lignin biosynthesis was repressed in fiber tissues but retained in the plant’s vessels, and polysaccharide deposition was enhanced in fiber cells. Growth of these engineered plants showed little to no apparent negative impact on growth phenotype. Analyses of these engineered Arabidopsis plants were conducted to determine if the engineered plants would yield more sugars than wild type. Both wild type and engineered plant biomasses were treated with an ionic liquid at either 70°C for 5 hours or 140°C for 3 hours. After pretreatment at 140°C and subsequent saccharification, the relative peak sugar recovery from biomass of engineered plants and wild type was not statistically different. However, reducing the pretreatment temperature to 70°C resulted in a higher peak sugar recovery for the engineered lines, but a significant reduction in the peak sugar recovery obtained from the wild type. These results demonstrate that employing cell wall engineering to decrease the recalcitrance of lignocellulosic biomass has the potential to drastically reduce the energy required for effective pretreatment.

Reference: Scullin, C., A. G. Cruz, Y.-D. Chuang, B. A. Simmons, D. Loque, and S. Singh. 2015. “Restricting Lignin and Enhancing Sugar Deposition in Secondary Cell Walls Enhances Monomeric Sugar Release After Low Temperature Ionic Liquid Pretreatment,” Biotechnology for Biofuels 8, 95. DOI: 10.1186/s13068-015-0275-2. (Reference link)

Contact: Kent Peters, SC-23.2, (301) 903-5549
Topic Areas:

  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Biosystems Design

Division: SC-33.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)