U.S. Department of Energy Office of Biological and Environmental Research

Searchable Research Highlights



Comprehensive View of Global Potential for Hydro-Generated Electricity
Published: July 08, 2015
Posted: August 19, 2015

Hydropower, the current dominant renewable energy source, can facilitate the deployment of other variable renewable energy resources used in part to reduce greenhouse gas emissions and provide a stable and sustainable source of electricity. Improved information on hydropower potential and its spatial distribution can help decisionmakers guide the deployment of hydropower plants. Hydropower potential information is also an important input to integrated assessment and energy–economic models, which are used to help explore future energy systems, climate impacts, and transition pathways to lower-carbon futures over decadal to century time scales. In this study, researchers at the Department of Energy’s (DOE) Pacific Northwest National Laboratory assessed global hydropower potential using water runoff and stream flow data, along with turbine technology performance, cost assumptions, and consideration of protected areas. The results provide the first comprehensive quantification of global hydropower potential including: gross, technical, economic, and exploitable. The hydropower is estimated in petawatt hours per year, a measurement defined to quantify electrical use per hour in terms of a quadrillion watts. The research shows that hydropower has the potential to supply a significant portion of world energy needs, although this potential varies substantially by region. Globally, exploitable hydropower potential is comparable to total electricity demand in 2005. Regionally, hydropower plays different roles in each country, mainly because of regional variation in potential relative to electricity demand. In addition, hydropower estimates are sensitive to a number of regionally defined parameters: design capacity, cost assumptions, turbine efficiency, stream flow, fixed charge rate, and protected land. The research emphasizes hydropower’s reliable role for future energy systems, especially when compared to other renewable energy resources with larger uncertainty in their future potentials. This work was jointly sponsored by DOE’s Earth System Modeling and Integrated Assessment Research programs.

Reference: Zhou, Y., M. Hejazi, S. J. Smith, J. A. Edmonds, H.-Y. Li, L. Clarke, K. Calvin, and A. Thomson. 2015. “A Comprehensive View of Global Potential for Hydro-generated Electricity,” Energy & Environmental Science, DOI: 10.1039/C5EE00888C. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105, Bob Vallario, SC 23.1, (301) 903-5758
Topic Areas:

  • Research Area: Climate and Earth System Modeling
  • Research Area: Integrated Assessment
  • Mission Science: Climate

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 26, 2018
Small Particles Play Large Role in Tropical Thunderstorms
Researchers find that ultrafine aerosol particles produce bigger storm clouds and more precipitat [more...]

Jan 26, 2018
More Designer Peptides, More Possibilities
Combined experimental and modeling approach contributes to understanding the structure of cell me [more...]

Jan 08, 2018
Impacts of Microtopographic Snow Redistribution and Lateral Subsurface Processes in an Arctic Polygonal Ecosystem
Lateral subsurface hydrologic and thermal processes were explicitly represented in the E3SM Land [more...]

Jan 05, 2018
Drought-Pathogen Interactions and Oak Tree Mortality
Interactions between drought and pathogens are important factors driving “pulses” of [more...]

Jan 02, 2018
Tropical Forest Soil Carbon Stocks Predicted by Nutrients and Roots, not Aboveground Plant Biomass
Soil base cation availability regulates tropical soil C stocks via a negative relationship with [more...]