U.S. Department of Energy Office of Biological and Environmental Research

Searchable Research Highlights

Comprehensive View of Global Potential for Hydro-Generated Electricity
Published: July 08, 2015
Posted: August 19, 2015

Hydropower, the current dominant renewable energy source, can facilitate the deployment of other variable renewable energy resources used in part to reduce greenhouse gas emissions and provide a stable and sustainable source of electricity. Improved information on hydropower potential and its spatial distribution can help decisionmakers guide the deployment of hydropower plants. Hydropower potential information is also an important input to integrated assessment and energy–economic models, which are used to help explore future energy systems, climate impacts, and transition pathways to lower-carbon futures over decadal to century time scales. In this study, researchers at the Department of Energy’s (DOE) Pacific Northwest National Laboratory assessed global hydropower potential using water runoff and stream flow data, along with turbine technology performance, cost assumptions, and consideration of protected areas. The results provide the first comprehensive quantification of global hydropower potential including: gross, technical, economic, and exploitable. The hydropower is estimated in petawatt hours per year, a measurement defined to quantify electrical use per hour in terms of a quadrillion watts. The research shows that hydropower has the potential to supply a significant portion of world energy needs, although this potential varies substantially by region. Globally, exploitable hydropower potential is comparable to total electricity demand in 2005. Regionally, hydropower plays different roles in each country, mainly because of regional variation in potential relative to electricity demand. In addition, hydropower estimates are sensitive to a number of regionally defined parameters: design capacity, cost assumptions, turbine efficiency, stream flow, fixed charge rate, and protected land. The research emphasizes hydropower’s reliable role for future energy systems, especially when compared to other renewable energy resources with larger uncertainty in their future potentials. This work was jointly sponsored by DOE’s Earth System Modeling and Integrated Assessment Research programs.

Reference: Zhou, Y., M. Hejazi, S. J. Smith, J. A. Edmonds, H.-Y. Li, L. Clarke, K. Calvin, and A. Thomson. 2015. “A Comprehensive View of Global Potential for Hydro-generated Electricity,” Energy & Environmental Science, DOI: 10.1039/C5EE00888C. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105, Bob Vallario, SC 23.1, (301) 903-5758
Topic Areas:

  • Research Area: Climate and Earth System Modeling
  • Research Area: Integrated Assessment
  • Mission Science: Climate

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jun 22, 2017
International Space Station Observations Offer Insights into Plant Function
New instrumentation will be installed on the International Space Station to provide a unique opp [more...]

Jun 22, 2017
A Direct Measure of Basin-Wide Evaporation and Transpiration from the Amazon Rainforest
A water budget approach shows complex seasonal cycle and long-term changes in tropical forest fu [more...]

Jun 19, 2017
Isotope Delivery in Lignin: Not an Easy Path
Scientists attempt to overcome challenge of limited deuterium uptake by lignin for studies of bi [more...]

Jun 15, 2017
Review of Recent Advances in Understanding Secondary Organic Aerosols for Earth System Modeling
Researchers review recent findings on secondary organic aerosols and the impact on radiative for [more...]

Jun 15, 2017
Scientists Examine Extensive Surface Melting Event in Antarctica During 2015-2016 El Niño
Research observations provide clues on atmospheric contributions to an Antarctic melt event.