U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


New Analysis Methodology, with ARM Measurements, Identifies Reasons Behind Climate Model Biases
Published: June 04, 2015
Posted: August 19, 2015

To make confident predictions about future global and regional climate, global climate models (GCMs) must be capable of reproducing the present-day distribution of global heat and moisture. However, many GCMs exhibit a persistent bias in temperature over the mid-latitude continents, which is present in both short-range forecasts as well as long-term climate simulations. A common approach to evaluating model biases is to focus on the model-mean state, but this approach makes an unambiguous interpretation of the bias origins difficult, given that biases are often the result of the superposition of impacts of different processes over multiple time steps in the model.

A team of scientists funded in part by the Department of Energy’s (DOE) Atmospheric System Research and Regional and Global Climate Modeling programs developed a new methodology to objectively disentangle and quantify contributions from clouds and other processes in the creation of a surface warm bias in climate models. A unique feature of this approach is its focus on the growth of the temperature error at the time-step level. Compositing the error growth by the coinciding bias in total downwelling radiation provides unambiguous evidence for the role that clouds play in the creation of the surface warm bias during certain portions of the day. Furthermore, application of an objective cloud-regime classification allows for the detection of the specific cloud regimes that matter most for the bias creation. The new model evaluation methodology relies heavily on the availability of high-temporal resolution observations of temperature, cloud properties, and surface radiation from DOE’s Atmospheric Radiation Measurement (ARM) Climate Research Facility.

The scientists applied their new method to two state-of-the-art GCMs that exhibit a distinct warm bias over the ARM Southern Great Plains (SGP) site. The analysis finds that in one GCM, biases in deep-convective and low-level clouds contribute most to the temperature-error growth in the afternoon and evening, respectively. In the second GCM, deep clouds persist too long in the evening, leading to a growth of the temperature bias. The reduction of the temperature bias in both models in the morning and the growth of the bias in the second GCM in the afternoon could not be assigned to a cloud issue, but are more likely caused by a land-surface deficiency. This new analysis approach provides specific guidance to model developers about the processes on which they should focus development efforts to resolve existing model biases.

Reference: Van Weverberg, K., C. J. Morcrette, H.-Y. Ma, S. A. Klein, and J. C. Petch. 2015. “Using Regime Analysis to Identify the Contribution of Clouds to Surface Temperature Errors in Weather and Climate Models,” Quarterly Journal of the Royal Meteorological Society, DOI: 10.1002/qj.2603. (Reference link)

Contact: Renu Joseph, SC-23.1, (301) 903-9237, Sally McFarlane, SC-23.1, (301) 903-0943, Shaima Nasiri, SC-23.1, 301-903-0207
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research
  • Facility: DOE ARM User Facility

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)