BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Statistical Uncertainty of Eddy Covariance CO2 Fluxes Inferred Using Residual Bootstrap Approach
Published: June 15, 2015
Posted: July 24, 2015

Carbon dioxide (CO2) exchange between terrestrial systems and the atmosphere are an important element of the carbon cycle and greenhouse gas climate forcing. High-frequency eddy-covariance measurements of net ecosystem CO2 exchange (NEE) with the atmosphere are valuable resources for model parameterization, calibration, and validation. However, uncertainties in measured data (i.e., data gaps and inherent random errors) create problems for researchers attempting to quantify uncertainties in model projections of terrestrial ecosystem carbon cycling. In a recent study, researchers demonstrated that a model data fusion method (residual bootstrap) produces defensible annual NEE sums by mimicking the behavior of random errors, filling missing values, and simulating gap-filling biases. Annual NEE sums are estimated for 53 site years based on nine AmeriFlux eddy-covariance tower sites in the United States. In most cases, the annual estimates were comparable in magnitude with those obtained from gap-filled data. Additionally, compared to the AmeriFlux standardized gap filling, this approach provides better NEE estimates for moderate to longer, and more frequent, data gaps. Annual accumulated uncertainties in NEE at the 95% confidence level were ±30 gC m-2 yr-1 for evergreen needleleaf forests, ±60 gC m-2 yr-1 for deciduous broadleaf forests, and ±80 gC m-2 yr-1 for croplands. The residual bootstrap approach performed worst when gap length was greater than one month or data exclusion was greater than 90% during the growing season, common to other gap-filling techniques. However, this study produced robust results for most site years when monthly data coverage during the growing season is not extremely low. These results therefore suggest that the inclusion of NEE uncertainty estimates and better estimation for moderate to longer, and more frequent, data gaps as provided by the residual bootstrap approach can be beneficial for ecosystem model evaluation.

Reference: Wang, H.-J., W. J. Riley, and W. D. Collins. 2015. “Statistical Uncertainty of Eddy Covariance CO2 Fluxes Inferred Using a Residual Bootstrap Approach,” Agricultural and Forest Meteorology 206, 163–71. DOI: 10.1016/j.agrformet.2015.03.011. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)