U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Global Transformation and Fate of SOAs: Implications of Low Volatility SOA and Gas-Phase Fragmentation Reactions
Published: May 11, 2015
Posted: July 24, 2015

Secondary organic aerosols (SOAs) are often the dominant components of fine aerosols at many locations globally, but they are also the least understood. Their chemistry and properties are complex and poorly known, but they may play an important role in affecting cloud-aerosol interactions. SOA particles are created by complex multiscale interactions among human activities (fossil-fuel burning), biomass burning, and terrestrial biosphere and marine biogenic emissions that are linked by physical and chemical atmospheric processes. Although SOAs are large contributors to fine particle amounts and radiative forcing, they often are represented crudely in global models. For the first time, research led by U.S. Department of Energy researchers at Pacific Northwest National Laboratory replaced the previous crude SOA treatments with much more advanced treatments in a global climate model. The new treatments account for chemical reactions in the atmosphere that are both sources and sinks of SOA precursor gases (multigenerational aging), low “effective volatility” of SOA particles due to aging processes in the particle-phase, and “missing” semi-volatile/intermediate volatility precursors from global biomass burning and fossil-fuel sources. The new treatments caused large increases in simulated aerosol amounts, lifetimes, and direct radiative forcing compared to previous global modeling treatments and dramatically improved agreement with a suite of surface-based, aircraft, and satellite organic aerosol measurements, especially in regions affected by biomass burning emissions. The ratio of their revised non-volatile SOA to previous semi-volatile SOA burden varied by a factor of 2 to 5. Their new model treatments also largely increased loadings and lifetimes of SOA particles corresponding to continental outflow over marine environments, where cloud reflectivity (albedo) is highly sensitive to cloud seed (cloud condensation nuclei or CCN) concentrations. Their work shows that new and advanced aerosol model treatments are expected to change the radiative forcing of aerosols simulated by current generation global climate models. These findings will have large potential impacts on our understanding of aerosol-cloud-radiative forcing interactions.

Reference: Shrivastava, M., R. C. Easter, X. Liu, A. Zelenyuk, B. Singh, K. Zhang, P.-L. Ma, D. Chand, S. Ghan, J. L. Jimenez, Q. Zhang, J. Fast, P. J. Rasch, and P. Tiitta. 2015. “Global Transformation and Fate of SOA: Implications of Low Volatility SOA and Gas-Phase Fragmentation Reactions,” Journal of Geophysical Research-Atmospheres, DOI: 10.1002/2014JD022563. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105, Ashley Williamson, SC-23.1, (301) 903-3120
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)