U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Accurately Tracking Cloud Vertical Motions
Published: June 29, 2015
Posted: July 24, 2015

The tracking of cloud vertical motions and how these interact with atmospheric moisture and temperature are key for climate simulation and weather prediction. One of the most fundamental and ubiquitous calculations is the calculation of the properties of a cloud that rises vertically through the atmosphere. In fact, this calculation is performed thousands of times per day at weather centers around the world to quantify atmospheric instability and storm potential. It also is calculated many millions of times per day on supercomputers that are forecasting next week's weather and next century's climate. Despite the importance of this process, there is no agreement on how it should be calculated.

A recent study by a researcher at Lawrence Berkeley National Laboratory shows that previous methods for calculating these fluxes are flawed, and a new approach was developed. Three of the most common approaches are to use conservation of moist static energy (MSE), conservation of equivalent potential temperature, or conservation of entropy (the last two are actually the same). The new study shows that none of these is the correct choice: their use can lead to temperature errors on the order of 1 K. While 1 K may not sound like a lot, that is the typical buoyancy of a convecting cloud. The correct conservation principle is MSE minus CAPE, where CAPE is the parcel's convective available potential energy. This quantity is the sum of the parcel buoyancy from the parcel height to its level of neutral buoyancy. The new results will lead to improvements in model methods for simulating atmospheric convection and dynamics.

Reference: Romps, D. M. 2015. “MSE Minus CAPE is the True Conserved Variable for an Adiabatically Lifted Parcel,” Journal of the Atmospheric Sciences, DOI: 10.1175/JAS-D-15-0054.1. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)