U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Evaluating Global Streamflow Simulations by a Physically-Based Routing Model Coupled with the Community Land Model
Published: April 01, 2015
Posted: July 24, 2015

Streamflow is a key component of the terrestrial system. By redistributing water and the associated heat content and nutrients through the hillslope, tributary, and stream network, streamflow plays an important role in the regional and global water, energy, and biogeochemistry cycles of the Earth system. To improve streamflow modeling in Earth system models (ESMs), Department of Energy (DOE) scientists at Pacific Northwest National Laboratory (PNNL), with collaborators at the National Aeronautics and Space Administration’s Goddard Space Flight Center and University of Maryland, evaluated the global implementation of the Model for Scale Adaptive River Transport (MOSART) recently developed at PNNL and coupled with the Community Land Model (CLM4.0). To support global modeling using MOSART, a comprehensive global hydrography dataset was derived at multiple resolutions from different sources. The scientists first evaluated the simulated runoff fields against the composite runoff from the Global Runoff Data Center (GRDC). With routing of the runoff from CLM by MOSART, the simulated streamflow reproduced reasonably well the observed daily and monthly streamflow at over 1,600 major world river stations in terms of annual, seasonal, and daily flow statistics. The scientists also evaluated the impacts of model structure complexity. Results showed the spatial and temporal variability of river velocity simulated by MOSART is necessary for capturing streamflow seasonality and annual maximum flood. Other sources of simulation biases include uncertainties in the atmospheric forcing, as revealed by simulations driven by four different climate datasets, and human influences, based on a classification framework that quantifies the impact levels of large dams on the streamflow worldwide. In addition to simulating streamflow, MOSART provides a physically based global framework for modeling stream temperature and river biogeochemistry, both currently under or not represented in ESMs. This work was jointly sponsored by DOE’s Earth System Modeling and Integrated Assessment Research programs.

Reference: Li, H.-Y., L. R. Leung, A. Getirana, M. Huang, H. Wu, Y. Xu, J. Guo, and N. Voisin. 2015. “Evaluating Global Streamflow Simulations by a Physically Based Routing Model Coupled with the Community Land Model,” Journal of Hydrometeorology 16(2), 948–71. DOI: 10.1175/JHM-D-14-0079.1. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105, Bob Vallario, SC 23.1, (301) 903-5758
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Multisector Dynamics (formerly Integrated Assessment)

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)