BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Contribution of Changes in Atmospheric Circulation Patterns to Extreme Temperature Trends: Implications for Integrated Assessment
Published: June 24, 2015
Posted: July 24, 2015

Surface weather conditions are closely governed by the large-scale circulation of the atmosphere. Recent increases in the occurrence of some extreme weather phenomena have led to multiple mechanistic hypotheses linking changes in atmospheric circulation to increasing extreme event probability. However, observed evidence of long-term change in atmospheric circulation has been difficult to interpret, and therefore proven inclusive, but new efforts have revealed important insights. A research team, supported in part by the Department of Energy’s Integrated Assessment Research program, identified statistically significant trends in the occurrence of mid-atmospheric circulation patterns, which partially explain observed trends in surface temperature extremes over seven mid-latitude regions of the Northern Hemisphere. Utilizing self-organizing map (SOM) cluster analysis, the researchers detected robust pattern trends in a subset of these regions during both the satellite observation era (1979–2013) and the recent period of rapid Arctic sea ice decline (1990–2013). Particularly substantial influences include the contribution of increasing trends in anticyclonic circulations to summer/autumn hot extremes over portions of Eurasia and North America, and the contribution of increasing trends in northerly flow to winter cold extremes over central Asia. Their results indicate that although a substantial portion of the observed change in extreme temperature occurrence has resulted from regional- and global-scale thermodynamic changes, the risk of extreme temperatures over some regions also has been altered by recent changes in the frequency, persistence, and/or maximum duration of regional circulation patterns. These results have important implications for the field of integrated assessment research insofar as they demonstrate that the observed changes in temperature extremes have not been caused exclusively by a linear response to increasing greenhouse gas concentrations. Therefore, explicit treatment of atmospheric dynamics is required, if even in more computationally efficient ways, within integrated assessment modeling frameworks.

Reference: Horton, D. E., N. C. Johnson, D. Singh, D. L. Swain, B. Rajaratnam, and N. S. Diffenbaugh. 2015. “Contribution of Changes in Atmospheric Circulation Patterns to Extreme Temperature Trends,” Nature 522, 465–69. DOI: 10.1038/nature14550. (Reference link)

Contact: Bob Vallario, SC 23.1, (301) 903-5758
Topic Areas:

  • Research Area: Multisector Dynamics (formerly Integrated Assessment)

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)