BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


New Microfluidics DNA Assembly Platform
Published: June 15, 2015
Posted: July 24, 2015

Microbes are being engineered for a wide range of applications such as producing biofuels, biobased chemicals, and pharmaceuticals. Although currently available tools are useful for this process, further improvements are needed to lower the barriers scientists face if they plan to enter this growing field. Researchers at the Department of Energy’s Joint BioEnergy Institute have developed an innovative microfluidic platform for assembling DNA fragments, a critical step in the entire process. The new system uses volumes 10 times lower than current microfluidic platforms and has integrated region-specific temperature control and on-chip transformation. Integration of these steps in a single device minimizes the loss of reagents and products compared to conventional methods, which require, for example, multiple pipetting steps. For assembling DNA fragments, researchers implemented three commonly used DNA assembly protocols on the new microfluidic device: Golden Gate assembly, Gibson assembly, and yeast assembly (i.e., TAR cloning, DNA Assembler). Assembly of two combinatorial libraries of 16 plasmids each demonstrated the utility of these microfluidic methods. Each DNA plasmid was transformed into Escherichia coli or Saccharomyces cerevisiae using on-chip electroporation and further sequenced to verify the assembly. This platform likely will enable new research that can integrate this automated microfluidic platform to generate large combinatorial libraries of plasmids, helping to expedite the overall synthetic biology process for biofuels development.

Reference: Shih, S. C. C., G. Goyal, P. W. Kim, N. Koutsoubelis, J. D. Keasling, P. D. Adams, N. J. Hillson, and A. K. Singh. 2015. “A Versatile Microfluidic Device for Automating Synthetic Biology,” ACS Synthetic Biology, DOI: 10.1021/acssynbio.5b00062. (Reference link)

Contact: Kent Peters, SC-23.2, (301) 903-5549
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Biosystems Design

Division: SC-33.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)