U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Metabolism of Multiple Aromatic Compounds in Corn Stover Hydrolysate by Rhodopseudomonas palustris
Published: June 29, 2015
Posted: July 24, 2015

A major barrier to efficient conversion of lignocellulosic materials to biofuels is the sensitivity of microbes to inhibitory compounds formed during biomass pretreatment. Aromatics derived from lignocellulose are a major class of inhibitors that typically are not metabolized by microbes commonly used as biocatalysts. However, the purple nonsulfur bacterium Rhodopseudomonas palustris is known to utilize aromatic compounds such as benzoate or p-hydroxybenzoate under anaerobic conditions. Researchers at the Department of Energy’s Great Lakes Bioenergy Research Center (GLBRC) have now shown that R. palustris is able to remove a majority of the aromatic compounds present in corn stover hydrolysates while leaving the sugars intact. The conditioned hydrolysate supported improved growth of a second microbe that was not able to grow in untreated hydrolysate. GLBRC researchers also found that most of the aromatic compounds were metabolized via the known R. palustris benzoyl-coenzyme A (CoA) pathway. Furthermore, the use of benzoyl-CoA pathway mutants prevents complete degradation of the aromatics and allows for production of selected products that may be recovered as coproducts from fermentations. This work presents the first demonstration of a microbe’s ability to metabolize and remove mixed aromatics in biomass hydrolysate, compounds that are detrimental to most microbes and generally unsuitable as carbon sources. This knowledge may inform the design of new microbes for bioconversion that can generate valuable coproducts from fermentation of sugars in lignocellulosic biomass.

Reference: Austin, S., W. S. Kontur, A. Ulbrich, J. Z. Oshlag, W. Zhang, A. Higbee, Y. Zhang, J. J. Coon, D. B. Hodge, T. J. Donohue, and D. R. Noguera. 2015. “Metabolism of Multiple Aromatic Compounds in Corn Stover Hydrolysate by Rhodopseudomonas palustris,” Environmental Science and Technology 49(14), 8914–22. DOI: 10.1021/acs.est.5b02062. (Reference link)

Contact: Kent Peters, SC-23.2, (301) 903-5549
Topic Areas:

  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Biosystems Design

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)