BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Dimensions and Aspect Ratios of Natural Ice Crystals
Published: April 15, 2015
Posted: July 20, 2015

Understanding the physical processes that lead to the formation, growth, and precipitation of clouds is vital to improving climate models. Previous studies have shown that accurate knowledge of relationships among the dimensions of length (L), width (W), and maximum dimension (D) of ice crystals is important because they are used to construct shape models for calculating the single-scattering  and for determining the microphysical (e.g., cross-sectional area and fall velocity) properties of ice crystals. Additionally, new modeling approaches that explicitly predict particle properties, rather than using predefined ice categories as in traditional schemes, require statistical databases of L, W, and D of ice crystals. Existing databases of such properties are expanded to include cirrus clouds with different origins such as those originating from synoptic fronts, orographic (surface) influence, or in-cloud anvil growth from thunderstorms. The dimensions and aspect ratios (AR, which describes the dimension of the major axis divided by the dimension of the minor axis of crystals) were determined as functions of temperature and geophysical location.

The Cloud Particle Imager (CPI) records images of cloud particles with high resolution (2.3 µm) on a 1 million pixel charge coupled device. High-resolution images of ice crystals were recorded at temperatures between -87°C and 0°C during the following U.S. Department of Energy field campaigns: the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE), 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and 2010 Small PARTicles In CirrUS (SPARTICUS) campaign at the Southern Great Plains in Oklahoma. In situ ice crystal data from hexagonal plates, columns, and the components of bullet rosettes, which are the fundamental building blocks of ice crystal forms, were cataloged. These large databases are essential in representing the enormous spread of microphysical and radiative properties of ice crystals for retrieval algorithms and numerical modeling studies, and they will ultimately further enhance the predictive capabilities of climate models.

Reference: Um, J., G. M. McFarquhar, Y. P. Hong, S.-S. Lee, C. H. Jung, R. P. Lawson, and Q. Mo. 2015. “Dimensions and Aspect Ratios of Natural Ice Crystals,” Atmospheric Chemistry and Physics 15, 3933-56. DOI: 10.5194/acp-15-3933-2015. (Reference link)

Contact: Sally McFarlane, SC-23.1, (301) 903-0943, Rickey Petty, SC-23.1, (301) 903-5548, Ashley Williamson, SC-23.1, (301) 903-3120
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research
  • Facility: DOE ARM User Facility

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)