U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Dimensions and Aspect Ratios of Natural Ice Crystals
Published: April 15, 2015
Posted: July 20, 2015

Understanding the physical processes that lead to the formation, growth, and precipitation of clouds is vital to improving climate models. Previous studies have shown that accurate knowledge of relationships among the dimensions of length (L), width (W), and maximum dimension (D) of ice crystals is important because they are used to construct shape models for calculating the single-scattering  and for determining the microphysical (e.g., cross-sectional area and fall velocity) properties of ice crystals. Additionally, new modeling approaches that explicitly predict particle properties, rather than using predefined ice categories as in traditional schemes, require statistical databases of L, W, and D of ice crystals. Existing databases of such properties are expanded to include cirrus clouds with different origins such as those originating from synoptic fronts, orographic (surface) influence, or in-cloud anvil growth from thunderstorms. The dimensions and aspect ratios (AR, which describes the dimension of the major axis divided by the dimension of the minor axis of crystals) were determined as functions of temperature and geophysical location.

The Cloud Particle Imager (CPI) records images of cloud particles with high resolution (2.3 µm) on a 1 million pixel charge coupled device. High-resolution images of ice crystals were recorded at temperatures between -87°C and 0°C during the following U.S. Department of Energy field campaigns: the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE), 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and 2010 Small PARTicles In CirrUS (SPARTICUS) campaign at the Southern Great Plains in Oklahoma. In situ ice crystal data from hexagonal plates, columns, and the components of bullet rosettes, which are the fundamental building blocks of ice crystal forms, were cataloged. These large databases are essential in representing the enormous spread of microphysical and radiative properties of ice crystals for retrieval algorithms and numerical modeling studies, and they will ultimately further enhance the predictive capabilities of climate models.

Reference: Um, J., G. M. McFarquhar, Y. P. Hong, S.-S. Lee, C. H. Jung, R. P. Lawson, and Q. Mo. 2015. “Dimensions and Aspect Ratios of Natural Ice Crystals,” Atmospheric Chemistry and Physics 15, 3933-56. DOI: 10.5194/acp-15-3933-2015. (Reference link)

Contact: Sally McFarlane, SC-23.1, (301) 903-0943, Rickey Petty, SC-23.1, (301) 903-5548, Ashley Williamson, SC-23.1, (301) 903-3120
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research
  • Facility: DOE ARM User Facility

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)