U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Long-Term Study Alleviates Water-Use Concern for Biofuel Crops
Published: June 17, 2015
Posted: July 20, 2015

Potential water requirements are a significant concern for large-scale production of biofuel crops. Studying water use for plant communities across years of varying water availability can indicate how terrestrial water balances will respond to climate change and variability as well as to land cover change. Perennial biofuel crops, likely grown mainly on marginal lands of limited water availability, provide an example of a potentially extensive future land-cover conversion. Researchers at the Department of Energy’s Great Lakes Bioenergy Research Center measured growing-season evapotranspiration based on daily changes in soil profile water contents in five perennial systems—switchgrass, Miscanthus, native grasses, restored prairie, and hybrid poplar—and in annual maize (corn) in a temperate humid climate (Michigan, USA). Three study years (2010, 2011, and 2013) had normal growing-season rainfall, whereas 2012 was a drought year with about half to a third normal rainfall. Overall growing-season mean evapotranspiration for the four years did not vary significantly among corn and the perennial systems. Differences in biomass production largely determined variation in water-use efficiency. Miscanthus had the highest water-use efficiency in both normal and drought years, followed by maize; the native grasses and prairie were lower and poplar was intermediate. Measured water use by perennial systems was similar to maize across normal and drought years and contrasts with earlier modeling studies suggesting that rain-fed perennial biomass crops in this climate have little impact on landscape water balances, whether replacing rain-fed maize on arable lands or successional vegetation on marginal lands. Results also suggest that crop evapotranspiration rates, and thus groundwater recharge, streamflow, and lake levels, may be less sensitive to climate change than has been assumed.

Reference: Hamilton, S. K., M. Z. Hussain, A. K. Bhardwaj, B. Basso, and G. P. Robertson. 2015. “Comparative Water Use by Maize, Perennial Crops, Restored Prairie, and Poplar Trees in the U.S. Midwest,” Environmental Research Letters 10, 064015. DOI:10.1088/1748-9326/10/6/064015. (Reference link)

Contact: Kent Peters, SC-23.2, (301) 903-5549
Topic Areas:

  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)