U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Carbonate Minerals Could Immobilize Neptunium in Groundwater
Published: December 24, 2014
Posted: June 23, 2015

The radioactive metallic element neptunium (Np) is created when uranium (U)-based nuclear fuel is burned in electricity-producing commercial reactors and in plutonium-producing reactors operated for military purposes. Np(V) has been accidentally released to the environment at former Department of Energy (DOE) weapons production sites as well as other locations through a variety of circumstances. Because Np(V) has a high aqueous solubility, it is readily transported in groundwater. Predictions for the transport of Np(V) in groundwater are based on studies of U(VI), in part because U(VI) is easier and cheaper to study. However, there are major differences in the crystal chemistry of Np(V) and U(VI), suggesting they might be incorporated into mineral structures differently, and thereby immobilized in groundwater differently. In a recent study, researchers from the University of Notre Dame and Pacific Northwest National Laboratory examined factors that impact the structural incorporation of Np(V) and U(VI) ions into carbonate and sulfate minerals. Using spectroscopic and imaging instruments in RadEMSL, a radiochemistry facility at DOE’s Environmental Molecular Sciences Laboraty, the team found that carbonate minerals incorporated both ions at far higher levels than sulfate minerals. In addition, they found that Np(V) and U(VI) are incorporated into carbonate minerals at dramatically different levels, and that Np(V) can be readily incorporated into carbonate minerals, thereby reducing its mobility in groundwater.

Reference: Balboni, E., J. M. Morrison, Z. Wang, M. H. Engelhard, and P. C. Burns. 2015. "Incorporation of Np(V) and U(VI) in Carbonate and Sulfate Minerals Crystallized from Aqueous Solution," Geochimica et Cosmochimica Acta 151,133-49. DOI: 10.1016/j.gca.2014.10.027. (Reference link)
(See also)

Contact: Paul E. Bayer, SC-23.1, (301) 903-5324, Roland F. Hirsch, SC-23.2, (301) 903-9009
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)