U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Differences in Organic Matter from a Range of Soil Types and Ecosystems
Published: April 17, 2015
Posted: June 23, 2015

Organic matter in soils is a key reservoir for carbon and plays a significant role in nutrient biogeochemical cycling. Because of limited understanding of the molecular composition of soil organic matter (SOM), scientists are challenged to decipher the range of chemical processes in soils and to predict how terrestrial carbon fluxes will respond to changing climatic conditions and land use. To address this need, a team of scientists from the University of Idaho and Department of Energy’s Environmental Molecular Sciences Laboratory (EMSL) extracted SOM from multiple ecosystems using a variety of organic solvents, and then analyzed the SOM using EMSL’s ultra-high resolution mass spectrometry capabilities. The team found different solvents extracted different types of compounds from soils, significantly expanding the ability to sensitively detect and identify the vast suite of diverse organic molecules that compose SOM. These findings enable targeted extraction approaches to elucidate differences in organic matter among soils from different ecosystems. These findings also demonstrate that by using multiple solvents on the same soil material, scientists will be able to obtain a more complete characterization of the organic matter in a specific soil sample. Increased understanding of SOM composition in soils from multiple ecosystems is expected to improve predictions of how terrestrial carbon fluxes will respond to future climate change.

References: Tfaily, M., R. K. Chu, N. Tolic, K. M. Roscioli, C. R. Anderton, L. Paša-Tolic, E. W. Robinson, and N. J. Hess. 2015. “Advanced Solvent Based Methods for Molecular Characterization of Soil Organic Matter by High Resolution Mass Spectrometry,” Analytical Chemistry 87(10), 5206-15. DOI: 10.1021/acs.analchem.5b00116. (Reference link)
(See also)

Contact: Paul E. Bayer, SC-23.1, (301) 903-5324, Daniel Stover, SC-23.1, (301) 903-0289
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)