U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Determining Sugar Content of Plant Biomass
Published: April 15, 2015
Posted: May 05, 2015

Assessing biomass recalcitrance in large populations of both natural and transgenic plants is important to identify promising candidates for lignocellulosic biofuel production. To properly test and optimize biofuel production parameters, the starting sugar content must be known to calculate percent sugar yield and conversion efficiencies. The current standard procedure is both labor- and time-intensive, requiring gram quantities of biomass and taking close to 2 weeks for the full analysis. Pyrolysis molecular beam mass spectrometry (py-MBMS) has been used as a high-throughput method for determining lignin content and structure, and researchers at the Department of Energy’s BioEnergy Science Center are demonstrating its applicability for deter­mining glucose, xylose, arabinose, galactose, and mannose content in biomass. Py-MBMS measure­ments of sugars in the biomass from conifers, hardwoods, and herbaceous species give similar values to those measured using standard high-performance liquid chromato­graphy, indicating that py-MBMS provides an accurate quantification of total sugar content for a range of biomass types. With data collection for py-MBMS taking only 1.5 minutes per sample, py-MBMS is a rapid high-throughput method for quantifying sugar content in biomass. This improved rate of analysis will help in evaluating approaches to overcoming biomass recalcitrance.

Reference: Sykes, R. W., E. L. Gjersing, C. L. Doeppke, and M. F. Davis. 2015. “High-Throughput Method for Determining the Sugar Content in Biomass with Pyrolysis Molecular Beam Mass Spectrometry,” BioEnergy Research, DOI: 10.1007/s12155-015-9610-5. (Reference link)

Contact: Kent Peters, SC-23.2, (301) 903-5549
Topic Areas:

  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Research Technologies and Methodologies

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)