BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Using Metatranscriptomics to Understand Carbon Decomposition in Forest Soils
Published: April 23, 2015
Posted: May 05, 2015

Decomposition of plant materials in soils is accomplished by a complex and highly diverse community of microorganisms. The vast majority of these microbes cannot be grown in laboratories, and the roles of different species in decomposition and responses to changing environmental conditions are not well understood. Ecologists have demonstrated that the addition of nitrogen to forest soils significantly slows the rate of carbon decomposition, but it is not well understood why this change occurs. Recent advances in soil metatranscriptomics, the direct analysis of microbial community gene expression in environmental samples, have provided researchers with a more sophisticated set of tools to track changes in microbial community structure and function. In a new study, a collaborative team of scientists at Los Alamos National Laboratory and the University of Michigan have completed a metatranscriptomic analysis of forest soils at a long-term ecological experiment examining impacts of nitrogen addition. By developing a new technique for metatranscriptomic sampling, the team was able to complete a much deeper analysis of community metabolic potential than has been previously attempted. Using this approach, fungal and bacterial genes involved in degradation of plant lignocellulose were determined to undergo large changes in expression at two separated sites with elevated nitrogen. Overall pattern shifts were consistent with decreased carbon decomposition rates, but specific mechanisms appeared to vary between the different forest sites. As climate change processes shift environmental variables and agricultural practices continue to alter nitrogen inputs in terrestrial soils, understanding their coupled impacts on microbial community activities will be crucial to more confidently modeling and predicting impacts on different ecosystems.

Reference: Hesse, C. N., R. C. Mueller, M. Vuyisich, L. Gallegos-Graves, C. D. Gleasner, D. R. Zak, and C. R. Kuske. 2015. “Forest Floor Community Metatranscriptomics Identify Fungal and Bacterial Response to N Deposition in Two Maple Forests,” Frontiers in Microbiology, DOI: 10.3389/fmicb.2015.00337. (Reference link)

Contact: Joseph Graber, SC-23.2, (301) 903-1239
Topic Areas:

  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities

Division: SC-33.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)