U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Using Metatranscriptomics to Understand Carbon Decomposition in Forest Soils
Published: April 23, 2015
Posted: May 05, 2015

Decomposition of plant materials in soils is accomplished by a complex and highly diverse community of microorganisms. The vast majority of these microbes cannot be grown in laboratories, and the roles of different species in decomposition and responses to changing environmental conditions are not well understood. Ecologists have demonstrated that the addition of nitrogen to forest soils significantly slows the rate of carbon decomposition, but it is not well understood why this change occurs. Recent advances in soil metatranscriptomics, the direct analysis of microbial community gene expression in environmental samples, have provided researchers with a more sophisticated set of tools to track changes in microbial community structure and function. In a new study, a collaborative team of scientists at Los Alamos National Laboratory and the University of Michigan have completed a metatranscriptomic analysis of forest soils at a long-term ecological experiment examining impacts of nitrogen addition. By developing a new technique for metatranscriptomic sampling, the team was able to complete a much deeper analysis of community metabolic potential than has been previously attempted. Using this approach, fungal and bacterial genes involved in degradation of plant lignocellulose were determined to undergo large changes in expression at two separated sites with elevated nitrogen. Overall pattern shifts were consistent with decreased carbon decomposition rates, but specific mechanisms appeared to vary between the different forest sites. As climate change processes shift environmental variables and agricultural practices continue to alter nitrogen inputs in terrestrial soils, understanding their coupled impacts on microbial community activities will be crucial to more confidently modeling and predicting impacts on different ecosystems.

Reference: Hesse, C. N., R. C. Mueller, M. Vuyisich, L. Gallegos-Graves, C. D. Gleasner, D. R. Zak, and C. R. Kuske. 2015. “Forest Floor Community Metatranscriptomics Identify Fungal and Bacterial Response to N Deposition in Two Maple Forests,” Frontiers in Microbiology, DOI: 10.3389/fmicb.2015.00337. (Reference link)

Contact: Joseph Graber, SC-23.2, (301) 903-1239
Topic Areas:

  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)