BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Novel Noncatalytic Cellulase-Binding Proteins Identified in Caldicellulosiruptor
Published: February 26, 2015
Posted: April 20, 2015

Lignocellulose-degrading microorganisms often produce cellulosomes, which are protein complexes containing cellulase enzymes and noncatalytic binding modules. However, the genus Caldicellulosiruptor does not encode for cellulosomes, indicating that this genus uses alternative attachment mechanisms. To look for cellulose-binding proteins in Caldicellulosiruptor kronotskyensis, researchers from the Department of Energy’s BioEnergy Science Center performed a proteomic screen to detect proteins enriched in a cellulose-bound fraction. A comparison of amino acid sequences from the cellulose-binding proteins to the C. kronotskyensis genomic sequence identified the likely encoding gene and a closely related gene. These genes, subsequently named tapirins, are unusual in that they share no detectable protein domain signatures with known polysaccharide-binding proteins. In addition, no genes homologous to these tapirin genes were found outside of the genus Caldicellulosiruptor. Heterologously expressed tapirin gene products demonstrated binding to insoluble substrates such as Avicel, switchgrass, and Populus biomass, with a high affinity and specificity. Crystallization of a cellulose-binding truncation from one tapirin indicated that these proteins form a long β-helix core with a shielded hydrophobic face and are structurally unique and define a new class of polysaccharide adhesins. Thus, the tapirins establish a new paradigm for how cellulolytic bacteria adhere to cellulose and may be used in engineering more efficient cellulase enzymes for more efficient lignocellulose deconstruction.

Reference: Blumer-Schuette, S. E., M. Alahuhta, J. M. Conway, L. L. Lee, J. V. Zurawski, R. J. Giannone, R. L. Hettich, V. V. Lunin, M. E. Himmel, and R. M. Kelly. 2015. “Discrete and Structurally Unique Proteins (Tapirins) Mediate Attachment of Extremely Thermophilic Caldicellulosiruptor Species to Cellulose,”The Journal of Biological Chemistry, DOI: 10.1074/jbc.M115.641480. (Reference link)

Contact: Kent Peters, SC-23.2, (301) 903-5549
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Biosystems Design
  • Research Area: Computational Biology, Bioinformatics, Modeling

Division: SC-33.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)