U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Novel Noncatalytic Cellulase-Binding Proteins Identified in Caldicellulosiruptor
Published: February 26, 2015
Posted: April 20, 2015

Lignocellulose-degrading microorganisms often produce cellulosomes, which are protein complexes containing cellulase enzymes and noncatalytic binding modules. However, the genus Caldicellulosiruptor does not encode for cellulosomes, indicating that this genus uses alternative attachment mechanisms. To look for cellulose-binding proteins in Caldicellulosiruptor kronotskyensis, researchers from the Department of Energy’s BioEnergy Science Center performed a proteomic screen to detect proteins enriched in a cellulose-bound fraction. A comparison of amino acid sequences from the cellulose-binding proteins to the C. kronotskyensis genomic sequence identified the likely encoding gene and a closely related gene. These genes, subsequently named tapirins, are unusual in that they share no detectable protein domain signatures with known polysaccharide-binding proteins. In addition, no genes homologous to these tapirin genes were found outside of the genus Caldicellulosiruptor. Heterologously expressed tapirin gene products demonstrated binding to insoluble substrates such as Avicel, switchgrass, and Populus biomass, with a high affinity and specificity. Crystallization of a cellulose-binding truncation from one tapirin indicated that these proteins form a long β-helix core with a shielded hydrophobic face and are structurally unique and define a new class of polysaccharide adhesins. Thus, the tapirins establish a new paradigm for how cellulolytic bacteria adhere to cellulose and may be used in engineering more efficient cellulase enzymes for more efficient lignocellulose deconstruction.

Reference: Blumer-Schuette, S. E., M. Alahuhta, J. M. Conway, L. L. Lee, J. V. Zurawski, R. J. Giannone, R. L. Hettich, V. V. Lunin, M. E. Himmel, and R. M. Kelly. 2015. “Discrete and Structurally Unique Proteins (Tapirins) Mediate Attachment of Extremely Thermophilic Caldicellulosiruptor Species to Cellulose,”The Journal of Biological Chemistry, DOI: 10.1074/jbc.M115.641480. (Reference link)

Contact: Kent Peters, SC-23.2, (301) 903-5549
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Biosystems Design
  • Research Area: Computational Biology, Bioinformatics, Modeling

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)