U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Promoter Set for Heterologous Gene Expression in Clostridium thermocellum
Published: March 30, 2015
Posted: April 20, 2015

For successful fermentation of biofuels and bioproducts from biomass, using microorganisms for which fewer genetic tools have been developed might be the most effective approach. To date, most metabolic engineering work in Clostridium thermocellum has focused on gene deletion, but many metabolic engineering strategies require well controlled heterologous gene expression, which requires a collection of well characterized and understood promoters. Researchers from the Department of Energy’s BioEnergy Science Center sought to identify new promoters for predictable gene expression in C. thermocellum. For this work, 17 different C. thermocellum promoters were tested with two different reporter genes (LacZ and AdhB) to ensure the activity of the target promoter was not gene-specific. Putative promoters were chosen by analyses of published C. thermocellum gene expression datasets. Promoter activity in both C. thermocellum and Escherichia coli were testedbecauseideally a promoter would not be strongly expressed in E. coli to avoid toxicity problems during cloning. Several useful promoters were identified (eno, cbp, cbp_2, 815, 966, 2638, and 2926), which showed high expression and high enzymatic activity of both reporter genes in C. thermocellum. Other promoters were not useful, showing no heterologous gene activity or negatively impacting plasmid stability. These results provide several new good promoters for C. thermocellum. This improved understanding of promoter function will enhance efforts to express heterologous genes important for improved biofuel production in C. thermocellum.

Reference: Olson, D. G., M. Maloney, A. A. Lanahan, S. Hon, L. J. Hauser, and L. R. Lynd. 2015. “Identifying Promoters for Gene Expression in Clostridium thermocellum,” Metabolic Engineering Communications, DOI: 10.1016/j.meteno.2015.03.002. (Reference link)

Contact: Kent Peters, SC-23.2, (301) 903-5549
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Biosystems Design

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)